The widespread acceptance and increase of the Internet and mobile technologies have revolutionized our existence. On the other hand, the world is witnessing and suffering due to technologically aided crime methods. These threats, including but not limited to hacking and intrusions and are the main concern for security experts. Nevertheless, the challenges facing effective intrusion detection methods continue closely associated with the researcher’s interests. This paper’s main contribution is to present a host-based intrusion detection system using a C4.5-based detector on top of the popular Consolidated Tree Construction (CTC) algorithm, which works efficiently in the presence of class-imbalanced data. An improved version of the random sampling mechanism called Supervised Relative Random Sampling (SRRS) has been proposed to generate a balanced sample from a high-class imbalanced dataset at the detector’s pre-processing stage. Moreover, an improved multi-class feature selection mechanism has been designed and developed as a filter component to generate the IDS datasets’ ideal outstanding features for efficient intrusion detection. The proposed IDS has been validated with state-of-the-art intrusion detection systems. The results show an accuracy of 99.96% and 99.95%, considering the NSL-KDD dataset and the CICIDS2017 dataset using 34 features.
Supervised learning and pattern recognition is a crucial area of research in information retrieval, knowledge engineering, image processing, medical imaging, and intrusion detection. Numerous algorithms have been designed to address such complex application domains. Despite an enormous array of supervised classifiers, researchers are yet to recognize a robust classification mechanism that accurately and quickly classifies the target dataset, especially in the field of intrusion detection systems (IDSs). Most of the existing literature considers the accuracy and false-positive rate for assessing the performance of classification algorithms. The absence of other performance measures, such as model build time, misclassification rate, and precision, should be considered the main limitation for classifier performance evaluation. This paper’s main contribution is to analyze the current literature status in the field of network intrusion detection, highlighting the number of classifiers used, dataset size, performance outputs, inferences, and research gaps. Therefore, fifty-four state-of-the-art classifiers of various different groups, i.e., Bayes, functions, lazy, rule-based, and decision tree, have been analyzed and explored in detail, considering the sixteen most popular performance measures. This research work aims to recognize a robust classifier, which is suitable for consideration as the base learner, while designing a host-based or network-based intrusion detection system. The NSLKDD, ISCXIDS2012, and CICIDS2017 datasets have been used for training and testing purposes. Furthermore, a widespread decision-making algorithm, referred to as Techniques for Order Preference by Similarity to the Ideal Solution (TOPSIS), allocated ranks to the classifiers based on observed performance reading on the concern datasets. The J48Consolidated provided the highest accuracy of 99.868%, a misclassification rate of 0.1319%, and a Kappa value of 0.998. Therefore, this classifier has been proposed as the ideal classifier for designing IDSs.
Biomedical engineers prefer decision forests over traditional decision trees to design state-of-the-art Parkinson’s Detection Systems (PDS) on massive acoustic signal data. However, the challenges that the researchers are facing with decision forests is identifying the minimum number of decision trees required to achieve maximum detection accuracy with the lowest error rate. This article examines two recent decision forest algorithms Systematically Developed Forest (SysFor), and Decision Forest by Penalizing Attributes (ForestPA) along with the popular Random Forest to design three distinct Parkinson’s detection schemes with optimum number of decision trees. The proposed approach undertakes minimum number of decision trees to achieve maximum detection accuracy. The training and testing samples and the density of trees in the forest are kept dynamic and incremental to achieve the decision forests with maximum capability for detecting Parkinson’s Disease (PD). The incremental tree densities with dynamic training and testing of decision forests proved to be a better approach for detection of PD. The proposed approaches are examined along with other state-of-the-art classifiers including the modern deep learning techniques to observe the detection capability. The article also provides a guideline to generate ideal training and testing split of two modern acoustic datasets of Parkinson’s and control subjects donated by the Department of Neurology in Cerrahpaşa, Istanbul and Departamento de Matemáticas, Universidad de Extremadura, Cáceres, Spain. Among the three proposed detection schemes the Forest by Penalizing Attributes (ForestPA) proved to be a promising Parkinson’s disease detector with a little number of decision trees in the forest to score the highest detection accuracy of 94.12% to 95.00%.
This article presents a machine learning approach for Parkinson’s disease detection. Potential multiple acoustic signal features of Parkinson’s and control subjects are ascertained. A collaborated feature bank is created through correlated feature selection, Fisher score feature selection, and mutual information-based feature selection schemes. A detection model on top of the feature bank has been developed using the traditional Naïve Bayes, which proved state of the art. The Naïve Bayes detector on collaborative acoustic features can detect the presence of Parkinson’s magnificently with a detection accuracy of 78.97% and precision of 0.926, under the hold-out cross validation. The collaborative feature bank on Naïve Bayes revealed distinguishable results as compared to many other recently proposed approaches. The simplicity of Naïve Bayes makes the system robust and effective throughout the detection process.
The progressive reduction of dopaminergic neurons in the human brain, especially at the substantia nigra is one of the principal causes of Parkinson’s Disease (PD). Voice alteration is one of the earliest symptoms found in PD patients. Therefore, the impaired PD subjects’ acoustic voice signal plays a crucial role in detecting the presence of Parkinson's. This manuscript presents four distinct decision tree ensemble methods of PD detection on a trailblazing ForEx++ rule-based framework. The Systematically Developed Forest (SysFor) and a Penalizing Attributes Decision Forest (ForestPA) ensemble approaches has been used for PD detection. The proposed detection schemes efficiently identify positive subjects using primary voice signal features, viz., baseline, vocal fold, and time–frequency. A novel feature selection scheme termed Feature Ranking to Feature Selection (FRFS) has also been proposed to combine filter and wrapper strategies. The proposed FRFS scheme encompasses Gel’s normality test to rank and selects outstanding features from baseline, time–frequency, and vocal fold feature groups. The SysFor and ForestPA decision forests underneath the ForEx++ rule-based framework on both FRFS feature ranking and subset selection represents Parkinson’s detection approaches, which expedite a better overall impact on segregating PD from control subjects. It has been observed that the ForestPA decision forest in the ForEx++ framework on FRFS ranked features proved to be a robust Parkinson’s detection scheme. The proposed models deliver the highest accuracy of 94.12% and a lowest mean absolute error of 0.25, resulting in an Area Under Curve (AUC) value of 0.97.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.