Abstract:In this work, an analytical approach is presented for modeling the capacitance of crystalline silicon solar cells. Based on a one-dimensional modeling of the cell, the excess minority carrier density, the photovoltage, and the capacitance are calculated. The motivation of this work are two-fold: to show base doping density and illumination effects on the capacitance of silicon solar cells, and to propose a determination technique for both dark capacitance and base doping density from C-V characteristics.
A theoretical study of a conventional boost converter is presented. Based on the real behavior of the components, two models of the boost converter are introduced: one dealing only with losses through inductor and capacitor and another taking into account switching losses in addition to resistive ones. From these two models, the detailed analytical expressions of both voltage gain factor and conversion efficiency are established taking into account the losses through parasitic resistances and switching losses. The behavior of the converter is then analyzed for each model by simulation for the voltage gain factor and the conversion efficiency.
Abstract:The aim of this work is to present a theoretical study of a vertical junction silicon solar cell under monochromatic illumination. By solving the continuity equation and using a one-dimensional model in frequency modulation, we derive the analytical expressions of both excess minority carrier density and photovoltage. Based on these expressions, the solar cell capacitance was calculated; we then exhibited the effects of both illumination wavelength and incidence angle on the solar cell capacitance.
This paper describes the theoretical model for calculating IV-curve of parallel vertical silicon solar cells (SCs) based on solving diffusion-recombination equation for such SC, which was suggested that two IV curve zones (those which are close to the short current and open circuit points) can be linearized. This linearalization allows obtaining the values of shunt (Rsh) and series (Rs) resistances. The evolution of the electric power based on these resistances was illustrated to show the values that shunt and series resistances must have to obtain a good efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.