Private multi-winner voting is the task of revealing k-hot binary vectors satisfying a bounded differential privacy (DP) guarantee. This task has been understudied in machine learning literature despite its prevalence in many domains such as healthcare. We propose three new DP multi-winner mechanisms: Binary, Tau, and Powerset voting. Binary voting operates independently per label through composition. Tau voting bounds votes optimally in their L2 norm for tight data-independent guarantees. Powerset voting operates over the entire binary vector by viewing the possible outcomes as a power set. Our theoretical and empirical analysis shows that Binary voting can be a competitive mechanism on many tasks unless there are strong correlations between labels, in which case Powerset voting outperforms it. We use our mechanisms to enable privacy-preserving multi-label learning in the central setting by extending the canonical single-label technique: PATE. We find that our techniques outperform current state-of-the-art approaches on large, real-world healthcare data and standard multi-label benchmarks. We further enable multi-label confidential and private collaborative (CaPC) learning and show that model performance can be significantly improved in the multi-site setting.
Self-Supervised Learning (SSL) is an increasingly popular ML paradigm that trains models to transform complex inputs into representations without relying on explicit labels. These representations encode similarity structures that enable efficient learning of multiple downstream tasks. Recently, ML-as-a-Service providers have commenced offering trained SSL models over inference APIs, which transform user inputs into useful representations for a fee. However, the high cost involved to train these models and their exposure over APIs both make black-box extraction a realistic security threat. We thus explore model stealing attacks against SSL. Unlike traditional model extraction on classifiers that output labels, the victim models here output representations; these representations are of significantly higher dimensionality compared to the low-dimensional prediction scores output by classifiers. We construct several novel attacks and find that approaches that train directly on a victim's stolen representations are query efficient and enable high accuracy for downstream models. We then show that existing defenses against model extraction are inadequate and not easily retrofitted to the specificities of SSL.
In model extraction attacks, adversaries can steal a machine learning model exposed via a public API by repeatedly querying it and adjusting their own model based on obtained predictions. To prevent model stealing, existing defenses focus on detecting malicious queries, truncating, or distorting outputs, thus necessarily introducing a tradeoff between robustness and model utility for legitimate users. Instead, we propose to impede model extraction by requiring users to complete a proof-of-work before they can read the model's predictions. This deters attackers by greatly increasing (even up to 100x) the computational effort needed to leverage query access for model extraction. Since we calibrate the effort required to complete the proof-of-work to each query, this only introduces a slight overhead for regular users (up to 2x). To achieve this, our calibration applies tools from differential privacy to measure the information revealed by a query. Our method requires no modification of the victim model and can be applied by machine learning practitioners to guard their publicly exposed models against being easily stolen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.