Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.
We address the time evolution of quantum correlations (QCs) such as entanglement, purity, and coherence for a model of two non-interacting qubits initially prepared as a maximally entangled bipartite state. We contrast the comparative potential of the classical fields to preserve these QCs in the noisy and noiseless realms. We also disclose the characteristic dynamical behavior of the QCs of the two-qubit state under the static noise effects originating from the common and different configuration models. We show that there is a direct connection between the fluctuations allowed by an environment and the preservation of QCs. Due to the static noise dephasing effects, the QCs are suppressed, resulting in the separability of the two-qubit entangled state after a finite duration. For bipartite QCs preservation, we show that the common configuration is more resourceful than the different configuration. Furthermore, this protection of the QCs under static noise for large intervals is entirely attributable to the existence of the entanglement sudden death and birth phenomenon. Most importantly, we found the bipartite QCs less fragile than the tripartite ones in comparison under the static noise. In addition, we find the concurrence measure to show more evident revivals of entanglement in comparison.
Chromium toxicity is considered as a major problem for agricultural soil that reduced crop productivity by affecting photosynthetic tissues. Exogenous application of melatonin can alleviate the adverse effects of chromium toxicity on plant growth. However, little is known about its effect on thylakoidal protein complexes responsible for conversion of solar energy to biochemical energy. Chlorophyll fluorescence a transients considered one of the best non-invasive and rapid method for the evaluation of photosynthetic (Photosystem II) efficiency of plants and plant health under environmental stress conditions. In the present study, three-week old plants of two canola cultivars AC-Excel and DGL were applied to melatonin (0, 1, 5, 10 μM) when grown under chromium stress (0, 50 and 100 μM) for further two weeks. Chromium stress reduced the growth (fresh and dry weights of shoots and roots) of both canola cultivars and exogenous application of 5 and 10 μM melatonin improved the growth of canola at 50 or 100 μM chromium stress. This improvement was greater in cv DGL than in AC-Excel. Increasing chromium decreased the photosynthetic pigments (chlorophyll a and chlorophyll b ). However, 5 and 10 μM melatonin application improved chlorophyll a at 50 μM chromium stress. Structural stability and efficiency of photosystem II (PSII) measured as performance index (PI ABS ) and ratios of fluorescence (Fv/Fm, Fv/Fo) Fv decreased due to chromium stress. JIP-test parameters showed that chromium stress increased the absorption and trapping fluxes with decrease in electron transport fluxes which caused the damage to reaction centers (RC), detachment of oxygen evolving complex (OEC) from RC or inefficiency of electron transfer from OEC to RC. Such adverse effects were greater in cv AC-Excel. However exogenous application of melatonin improved PI ABS , electron transport per reaction center (ET/RC), reduced variable fluorescence at J step (V J ) reflecting melatonin protected PSII from chromium stress induced damage by protecting OEC. Thus, OJIP fluorescence transients are quite helpful for understanding the intersystem electron transport beyond photosystem II in canola cultivars due to melatonin application under chromium stress. Findings Exogenous application of melatonin alleviated toxic effects of chromium on plant growth of canola by modulating photosynthesis, enhanced photosystem II efficiency and regulation of electron transport flux to protect photo-inhibition of PSII from oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.