IntroductionPrevious neuroimaging studies of Parkinson's disease (PD) patients have shown changes in whole-brain functional connectivity networks. Whether connectivity changes can be detected in the early stages (first 3 years) of PD by resting-state functional magnetic resonance imaging (fMRI) remains elusive. Research infrastructure including MRI and analytic capabilities is required to investigate this issue. The National Institutes of Health/National Institute of General Medical Sciences Center for Biomedical Research Excellence awards support infrastructure to advance research goals.MethodsStatic and dynamic functional connectivity analyses were conducted on early stage never-medicated PD subjects (N = 18) and matched healthy controls (N = 18) from the Parkinson's Progression Markers Initiative.ResultsAltered static and altered dynamic functional connectivity patterns were found in early PD resting-state fMRI data. Most static networks (with the exception of the default mode network) had a reduction in frequency and energy in specific low-frequency bands. Changes in dynamic networks in PD were associated with a decreased switching rate of brain states.DiscussionThis study demonstrates that in early PD, resting-state fMRI networks show spatial and temporal differences of fMRI signal characteristics. However, the default mode network was not associated with any measurable changes. Furthermore, by incorporating an optimum window size in a dynamic functional connectivity analysis, we found altered whole-brain temporal features in early PD, showing that PD subjects spend significantly more time than healthy controls in a specific brain state. These findings may help in improving diagnosis of early never-medicated PD patients. These key observations emerged in a Center for Biomedical Research Excellence–supported research environment.
Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review’s results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.