The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
The compound dichlorido-copper(II)-4-(2-5-bromobenzylideneamino)ethyl) piperazin-1-ium phenolate (CuLBS) was synthesized, characterized and screened for acute toxicity and protective activity against ethanol-induced gastric mucosal injury in rats. Gross microscopic lesions, biochemical and immunological parameters and histochemcial staining of glycogen storage were taken into consideration. Oral administration of CuLBS (30 and 60 mg/Kg) for two weeks dose-dependently flattened gastric mucosa, significantly increased gastric mucus and total acidity, compared with control group (P < 0.01). Serum levels of liver enzymes aspartate (AST) and alanine transaminases (ALT), pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines in the rats exposed to ethanol induced ulceration have been altered. Administration of CuLBS showed considerable (P < 0.05) protection against ulceration by modulating the acute alterations of cytokines AST, ALT and stomach glycogen. Interestingly, CuLBS did not interfere with the natural release of nitric oxide. CuLBS alone (60 mg/Kg) did not exhibit any ulcerogenic effect as assessed using Adami’s scoring scale. An acute toxicity study showed that rats treated with CuLBS (1,000 and 2,000 mg/Kg) manifested no abnormal signs. These findings therefore, suggested that the gastroprotective activity of CuLBS might contribute in modulating the inflammatory cytokine-mediated oxidative damage to gastric mucosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.