Objective:
To determine how well machine learning algorithms can classify mild cognitive impairment (MCI) subtypes and Alzheimer’s disease (AD) using features obtained from the digital Clock Drawing Test (dCDT).
Methods:
dCDT protocols were administered to 163 patients diagnosed with AD(n = 59), amnestic MCI (aMCI; n = 26), combined mixed/dysexecutive MCI (mixed/dys MCI; n = 43), and patients without MCI (non-MCI; n = 35) using standard clock drawing command and copy procedures, that is, draw the face of the clock, put in all of the numbers, and set the hands for “10 after 11.” A digital pen and custom software recorded patient’s drawings. Three hundred and fifty features were evaluated for maximum information/minimum redundancy. The best subset of features was used to train classification models to determine diagnostic accuracy.
Results:
Neural network employing information theoretic feature selection approaches achieved the best 2-group classification results with 10-fold cross validation accuracies at or above 83%, that is, AD versus non-MCI = 91.42%; AD versus aMCI = 91.49%; AD versus mixed/dys MCI = 84.05%; aMCI versus mixed/dys MCI = 84.11%; aMCI versus non-MCI = 83.44%; and mixed/dys MCI versus non-MCI = 85.42%. A follow-up two-group non-MCI versus all MCI patients analysis yielded comparable results (83.69%). Two-group classification analyses were achieved with 25–125 dCDT features depending on group classification. Three- and four-group analyses yielded lower but still promising levels of classification accuracy.
Conclusion:
Early identification of emergent neurodegenerative illness is criterial for better disease management. Applying machine learning to standard neuropsychological tests promises to be an effective first line screening method for classification of non-MCI and MCI subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.