Transfer of sufficient immunoglobulin G (IgG) to the neonatal calf via colostrum is vital to provide the calf with immunological protection and resistance against disease. The objective of the present study was to determine the factors associated with both colostral IgG concentration and colostral weight in Irish dairy cows. Fresh colostrum samples were collected from 704 dairy cows of varying breed and parity from four Irish research farms between January and December 2011; colostral weight was recorded and the IgG concentration was determined using an ELISA method. The mean IgG concentration in the colostrum was 112 g/l (s.d. 5 51 g/l) and ranged from 13 to 256 g/l. In total, 96% of the samples in this study contained .50 g/l IgG, which is considered to be indicative of high-quality colostrum. Mean colostral weight was 6.7 kg (s.d. 5 3.6 kg) with a range of 0.1 to 24 kg. Factors associated with both colostral IgG concentration and colostral weight were determined using a fixed effects multiple regression model. Parity, time interval from calving to next milking, month of calving, colostral weight and herd were all independently associated with IgG concentration. IgG concentration decreased ( P , 0.01) by 1.7 (s.e. 5 0.6) g/l per kg increase in the colostral weight. Older parity cows, cows that had a shorter time interval from calving to milking, and cows that calved earlier in spring or in the autumn produced colostrum with higher IgG concentration. Parity ( P , 0.001), time interval from calving to milking ( P , 0.01), weight of the calf at birth ( P , 0.05), colostral IgG concentration ( P , 0.01) and herd were all independently associated with colostral weight at the first milking. Younger parity cows, cows milked earlier post-calving, and cows with lighter calves produced less colostrum. In general, colostrum quality of cows in this study was higher than in many previous studies; possible reasons include use of a relatively low-yielding cow type that produces low weight of colostrum, short calving to colostrum collection interval and grass-based nutritional management. The results of this study indicate that colostral IgG concentration can be maximised by reducing the time interval between calving and collection of colostrum.
Transfer of sufficient IgG to the newborn calf via colostrum is vital to provide it with adequate immunological protection and resistance to disease. The objectives of the present study were to compare serum IgG concentration and health parameters of calves (1) fed different volumes of colostrum [7, 8.5, or 10% of body weight (BW)] within 2h of birth and (2) given 0, 2, or 4 subsequent feedings of transition milk (i.e., milkings 2 to 6 postcalving). Ninety-nine dairy calves were fed 7, 8.5, or 10% of BW in colostrum within 2h of birth and given 0, 2, or 4 subsequent feedings of transition milk. The concentration of IgG in the serum of calves was measured at 24, 48, 72, and 642 h of age by an ELISA. The apparent efficiency of absorption for IgG was determined. Health scores were assigned to calves twice per week and all episodes of disease were recorded. The effect of experimental treatment on calf serum IgG concentration differed by the age of the calf. Calves fed 8.5% of BW in colostrum had a greater mean serum IgG concentration than calves fed 7 or 10% of BW at 24, 48, and 72 h of age. At 642 h of age, serum IgG concentrations of calves fed 8.5% of BW (24.2g/L) and calves fed 10% of BW (21.6g/L) did not differ, although the serum IgG concentration of calves fed 8.5% of BW was still greater than that of calves fed 7% of BW (20.7 g/L). No difference in serum IgG concentration existed between calves fed 7% of BW and those fed 10% of BW at any age. No significant effect of number of subsequent feedings of transition milk on calf serum IgG concentration was detected. The apparent efficiency of absorption of calves fed 8.5% of BW in colostrum (38%) was greater than calves fed 7% of BW in colostrum (26%) and tended to be greater than in calves fed 10% of BW (29%). Calves fed further feedings of transition milk after the initial feeding of colostrum had a lower odds (0.62; 95% confidence interval: 0.41 to 0.93) of being assigned a worse eye/ear score (i.e., a more copious ocular discharge or pronounced ear droop) and a lower odds (0.5; 95% confidence interval: 0.32 to 0.79) of being assigned a worse nasal score (i.e., a more copious and purulent nasal discharge) during the study period relative to calves that received no further feedings of transition milk. In conclusion, calves fed 8.5% of BW in colostrum within 2h of birth achieved a greater concentration of IgG in serum in the first 3 d of life than calves fed either 7 or 10% of BW. Feeding calves transition milk subsequently reduced their odds of being assigned a worse eye/ear and nasal score.
BackgroundFailure of passive transfer of maternal immunity via colostrum can occur in the bovine, and a number of blood tests have been developed to test calves for this failure. It is not clear which test is most suitable for this purpose. The objective was to examine the most commonly used tests for failure of passive transfer and to decide which is most suitable for routine laboratory use. 126 serum samples were taken from calves of dairy cows after birth but prior to colostrum feeding, and at 48 h of age. Five different tests were compared against radial immunodiffusion which is considered the appropriate reference method. These tests were serum gamma-glutamyltransferase levels, serum protein levels, serum globulin levels, an enzyme linked immunosorbent assay and the zinc sulphate turbidity test.ResultsThe tests examined displayed high sensitivity but widely varying specificity. Examination of the use of different cut-off points allowed some improvement in specificity at the expense of sensitivity, but the tests which had performed best at the original cut-off points still displayed the best performance. Gamma-glutamyltransferase levels as a measure of colostrum absorption returned, in this study, the best balance between sensitivity and specificity. The ELISA used in this study and serum globulin levels displayed performance similar to the gamma-glutamyltransferase levels. Serum total protein was less successful than others examined at providing both sensitivity and specificity but may, when performed via refractometer, be useful for on-farm testing. As currently performed the poor sensitivity for which the zinc sulphate turbidity test is most often criticized is evident. Modification of the cut-off point to increase specificity is less successful at balancing these parameters than the ELISA, gamma-glutamyltransferase levels, and globulin levels.ConclusionsGamma-glutamyltransferase levels, ELISA testing and circulating globulin levels performed best in detecting failure of passive transfer in serum samples, although all three had some practical considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.