The implementation of a marketing strategy requires a reference so that promotion can be on target, such as by looking for similarities between product items. This study examines the application of the association rule method and apriori algorithm to the purchase transaction dataset to assist in forming candidate combinations among product items for customer recommended product promotion. The purchase transaction dataset was collected in October and November 2018 with a total data of 1027. In the experiment, the minimum value of support is 85%, and the minimum confidence value is 90% by processing data using the Weka software 3.9 version. Apriori algorithm can form association rules as a reference in the promotion of company products and decision support in providing product recommendations to customers based on defined minimum support and confidence values.
Leasing vehicles are a company engaged in the field of vehicle loans. Purchase by way of credit becomes a mainstay because it can attract potential customers to generate more profit. But if there is a mistake in approving a customer candidate, the risk of stalled credit payments can happen. To minimize the risk, it can be applied the certain data mining technique to predict the future behavior of the customers. In this study, it is explored in some data mining techniques such as C4.5 and Naive Bayes for this purpose. The customer attributes used in this study are: salary, age, marital status, other installments and worthiness. The experiments are performed by using the Weka software. Based on evaluation criteria, i.e. accuracy, C4.5 algorithm outperforms compared to Naive Bayes. The percentage split experiment scenarios provide the precision value of 89.16% and the accuracy value of 83.33% wheres the cross validation experiment scenarios give the higher accuracy values of all used k-fold. The C4.5 experiment results also confirm that the most influential instant data attribute in this research is the salary.
In dealing with the rapid growth of digitalization, the e-learning system has become a mandatory component of any Higher Education (HE) to serve academic processes requests. Along with the increasing number of users, the need for service availability and capabilities of eLearning are increasing day by day. The organization should always look for strategies to keep the eLearning always able to meet these demands. This report presents the implementation of Load Balancing Clustering (LBC) mechanism applied to Moodle LMS in an HE Institution to deal with the poor performance issues. By utilizing existing tools such as HAProxy and keepalived, the implemented LBC configuration delivers a qualified e-learning system performance. Both qualitative and quantitative parameters convince better performance than before. In four months of the operation there is no user complaint received. Meanwhile, in the current semester has been running for two months, the up-time is 99.8 % of 52.685 minutes operational time.
Sebagai upaya untuk memenangkan persaingan di pasar, perusahaan farmasi harus menghasilkan produk obat – obatan yang berkualitas. Untuk menghasilkan produk yang berkualitas, diperlukan perencanaan produksi yang baik dan efisien. Salah satu dasar perencanaan produksi adalah prediksi penjualan. PT. Metiska Farma telah menerapkan metode prediksi dalam proses produksi, akan tetapi prediksi yang dihasilkan tidak akurat sehingga menyebabkan tidak optimal dalam memenuhi permintaan pasar. Untuk meminimalisir masalah kurang akuratnya proses prediksi tersebut, dalam penelitian yang disajikan pada makalah ini dilakukan uji coba prediksi menggunakan teknik Machine Learning dengan metode Regresi Long Short Term Memory (LSTM). Teknik yang diusulkan diuji coba menggunakan dataset penjualan produk “X” dari PT. Metiska Farma dengan parameter kinerja Root Mean Squared Error (RMSE) dan MAPE (Mean Absolute Percentage Error). Hasil penelitian ini berupa nilai rata – rata evaluasi error dari pemodelan data training dan data testing. Di mana hasil menunjukan bahwa Regresi LSTM memiliki nilai prediksi penjualan dengan evaluasi model melalui RMSE sebesar 286.465.424 untuk data training dan 187.013.430 untuk data testing. Untuk nilai MAPE sebesar 787% dan 309% untuk data training dan data testing secara berurut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.