In this paper we consider an elementary, and largely unexplored, combinatorial problem in lowdimensional topology. Consider a real 2-dimensional compact surface S, and fix a number of points F on its boundary. We ask: how many configurations of disjoint arcs are there on S whose boundary is F ?We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of topological recursion. Moreover, they exhibit quasi-polynomial behaviour.This "elementary curve-counting" is in fact related to a more advanced notion of "curve-counting" from algebraic geometry or symplectic geometry. The asymptotics of this enumerative problem are closely related to the asymptotics of volumes of moduli spaces of curves, and the quasi-polynomials governing the enumerative problem encode intersection numbers on moduli spaces. Furthermore, among several other results, we show that generating functions and differential forms for these curve counts exhibit structure that is reminiscent of the mathematical physics of free energies, partition functions, topological recursion, and quantum curves.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.