Huguenard and Prince, 1994a). The hyperpolarization of membrane potentials induced by the activation of GABA B receptors evokes rebound burst discharges in TC neurons (Crunelli and Leresche, 1991; McCormick and Bal, 1994). This characteristic firing pat-
Alleviating charge recombination at the electrode/electrolyte interface by introducing an overlayer is considered an efficient approach to improve photoelectrochemical (PEC) water oxidation. A WO3 overlayer with dual oxygen and tungsten vacancies was prepared by using a solution-based reducing agent, LEDA (lithium dissolved in ethylenediamine), which improved the PEC performance of the mesoporous WO3 photoanode dramatically. In comparison to the pristine samples, the interconnected WO3 nanoparticles surrounded by a 2-2.5 nm thick overlayer exhibited a photocurrent density approximately 2.4 times higher and a marked cathodic shift of the onset potential, which is mainly attributed to the facilitative effect on interface charge transfer and the improved conductivity by enhanced charge carrier density. This simple and effective strategy may provide a new path to improve the PEC performance of other photoanodes.
Zn(II)–porphyrin sensitizers, coded as SGT‐020 and SGT‐021, are designed and synthesized through donor structural engineering. The photovoltaic (PV) performances of SGT sensitizer‐based dye‐sensitized solar cells (DSSCs) are systematically evaluated in a thorough SM315 as a reference sensitizer. The effect of the donor ability and the donor bulkiness on photovoltaic performances is investigated for establishing the structure–performance relationship in the platform of porphyrin‐triple bond‐benzothiadiazole‐acceptor sensitizers. By introducing a more bulky fluorene unit to the amine group in the SM315, the power conversion efficiency (PCE) is enhanced with the increased short‐circuit current (Jsc) and open‐circuit voltage (Voc), due to the improved light‐harvesting ability and the efficient prevention of charge recombination, respectively. As a consequence, a maximum PCE of 12.11% is obtained for SGT‐021, whose PCE is much higher than the 11.70% PCE for SM315. To further improve their maximum efficiency, the first parallel tandem DSSCs employing cobalt electrolyte in the top and bottom cells are demonstrated and an extremely high efficiency of 14% is achieved, which is currently the highest reported value for tandem DSSCs. The series tandem DSSCs give a remarkably high Voc value of >1.83 V. From this DSSC tandem configuration, 7.4% applied bias photon‐to‐current efficiency is achieved for solar water splitting.
In this contribution we have developed TiO inverse opal based photoelectrodes for photoelectrochemical (PEC) water splitting devices, in which Au nanoparticles (NPs) and reduced graphene oxide (rGO) have been strategically incorporated (TiO@rGO@Au). The periodic hybrid nanostructure showed a photocurrent density of 1.29 mA cm at 1.23 V vs RHE, uncovering a 2-fold enhancement compared to a pristine TiO reference. The Au NPs were confirmed to extensively broaden the absorption spectrum of TiO into the visible range and to reduce the onset potential of these photoelectrodes. Most importantly, TiO@rGO@Au hybrid exhibited a 14-fold enhanced PEC efficiency under visible light and a 2.5-fold enrichment in the applied bias photon-to-current efficiency at much lower bias potential compared with pristine TiO. Incident photon-to-electron conversion efficiency measurements highlighted a synergetic effect between Au plasmon sensitization and rGO-mediated facile charge separation/transportation, which is believed to significantly enhance the PEC activity of these nanostructures under simulated and visible light irradiation. Under the selected operating conditions the incorporation of Au NPs and rGO into TiO resulted in a remarkable boost in the H evolution rate (17.8 μmol/cm) compared to a pristine TiO photoelectrode reference (7.6 μmol/cm). In line with these results and by showing excellent stability as a photoelectrode, these materials are herin underlined to be of promising interest in the PEC water splitting reaction.
To realize economically competitive
hydrogen production through
photoelectrochemical (PEC) water splitting, it is essential to develop
an efficient photoelectrode consisting of earth-abundant constituents
in conjunction with low-cost solution processing. Cu2ZnSnS4 (CZTS) has received significant attention as a promising
photocathode owing to its abundance and good absorption properties.
However, the efficiency of the solution-processed CZTS photocathode
is not yet comparable to its counterparts. Here, a hybrid ink, obtained
by careful control of precursor mixing order, was used to produce
a highly efficient CZTS photocathode. The molecular chemistry-controlled
hybrid ink formulation, particularly the roles of thiourea–Sn2+ complexation, was elucidated by liquid Raman spectroscopy.
The hybrid ink-derived CZTS thin films modified with conformal coating
of an n-type TiO2/CdS double layer and a Pt electrocatalyst
achieved an exceptionally high photocurrent of 13 mA cm–2 at −0.2 V versus a reversible hydrogen electrode
under 1 sun illumination. The modified photocathodes showed relatively
stable H2 production with faradaic efficiency close to
unity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.