We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25.
Photocatalytic, plasma and combined plasma–photocatalytic processes were applied for the destruction of a model pollutant, Rhodamine B dye, in an aqueous solution (concentration of 40 mg/L). For this purpose TiO2-pillared montmorillonite was used as a photocatalyst (characterized by X-ray analysis and low-temperature nitrogen adsorption/desorption). It was prepared by the method of intercalation of titanium hydroxocomplexes, including hydrothermal activation of the process and preliminary mechanical treatment of the layered substrate. The dielectric barrier discharge (DBD) plasma in the presence of photocatalysts increases the efficiency of dye degradation (100%, 8 s) compared to plasmolysis (94%) and UV photolysis (92%, 100 min of UV irradiation); in contrast to photolysis, destructive processes are more profound and lead to the formation of simple organic compounds such as carboxylic acids. The plasma–catalytic method enhances by 20% the energetic efficiency of the destruction of Rhodamine B compared to DBD plasma. The efficiency of dye destruction with the plasma–catalytic method increases with the improvement of the textural properties of the photocatalyst.
A biomimetic solution technology for producing a photocatalytic material in the form of biomorphic titanium oxide fibers with a hierarchical structure using short flax fiber as a biotemplate is proposed. The impregnation of flax fibers intensified under hydrothermal conditions with a precursor was performed in an autoclave to activate the nucleation of the photoactive TiO2 phases. The interaction between precursor and flax fibers was studied by using infrared spectroscopy (IR) and differential scanning calorimetry/thermogravimetry analysis (DSC/TG). The morphology, structure, and textural properties of the TiO2 fibers obtained at annealing temperatures of 500–700 °C were determined by X-ray diffraction analysis, scanning electron microscopy, and nitrogen adsorption/desorption. It is shown that the annealing temperature of the impregnated biotemplates significantly affects the phase composition, crystallite size, and porous structure of TiO2 fiber samples. The photocatalytic activity of the obtained fibrous TiO2 materials was evaluated by using the decomposition of the cationic dye Rhodamine B in an aqueous solution (concentration 12 mg/L) under the influence of ultraviolet radiation (UV). The maximum photodegradation efficiency of the Rhodamine B was observed for TiO2 fibers annealed at 600 °C and containing 40% anatase and 60% rutile. This sample ensured 100% degradation of the dye in 20 min, and this amount significantly exceeds the photocatalytic activity of the commercial Degussa P25 photocatalyst and TiO2 samples obtained previously under hydrothermal conditions by the sol-gel method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.