Many of the finishing operations in the manufacture of dies and moulds are dependent on ball-nose milling cutters to produce the required geometry and surface quality. These cutters (high cost, carbide coated) work best in situations where the load on the cutter is constant and rapid changes in direction are kept to a minimum. The majority of computer aided manufacturing (CAM) systems provide a number of alternative machining strategies to support this approach, but they do not provide an accurate prediction of the surface quality in the finished product. This paper outlines a predictive theory for the surface quality. The ball-nose cutting mechanism has been modelled and simulated to generate the surface topography expected in the actual operation. The results match those from the experimental machining trials and enable the prediction and determination of the surface quality in other applications prior to the machining operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.