Carbon nanotubes (CNTs), with their exceptional electrical properties, chemical stability, and mechanical strength, have attracted a great deal of attention. This makes the material attractive for a wide range of applications, including composite materials, 1 battery electrode materials, 2 nanoelectronics, 3,4 and nanoscale sensors. 5 However, the properties of CNTs are highly dependent on their structure and size. Such sensitivity to size and structure imposes a potential barrier to the realization of the novel properties of CNTs in many applications. In the growth of CNTs by chemical vapor deposition (CVD), the diameters of CNTs are determined by the sizes of catalysts. 6 One way to obtain CNTs with fewer chiral arrangements is to use smaller catalyst particles. Thus, CNTs with smaller diameters, for example less than 2 nm, are most likely to be single-walled with fewer geometrical arrangements. This should limit the band gap range and allow the possibility of having all metallic or all semiconducting CNTs from a given growth. Moreover, such small-diameter nanotubes have larger band gaps, which minimize off-state leakage, thereby increasing the transistor on/off current ratio in transistor applications. 7 Significant progress has been made in driving catalyst size, and thus nanotube diameters, down
Improvement of 1.4× in the external quantum efficiency and luminous efficiency (lm/W) of transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes is demonstrated. The improvement is accomplished by reducing the thickness of the active layer to ⩽2000 Å and increasing the internal quantum efficiency by using multiple thin (⩽500 Å) active layers. The maximum luminous efficiency achieved is 73.7 lm/W at λp∼615 nm and the maximum external quantum efficiency is 32.0% at λp∼632 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.