The solvability of the boundary value problem for pseudohyperbolic equations
of the third order is investigated. For the problem under study, an
algorithm for finding an approximate solution is proposed and sufficient
conditions for unique solvability are established.
In a rectangular domain, we consider a boundary value problem periodic in one variable for a system of partial differential equations of hyperbolic type. Introducing a new unknown function, this problem is reduced to an equivalent boundary value problem for an ordinary differential equation with an integral condition. Based on the parametrization method, new approaches to finding an approximate solution to an equivalent problem are proposed and its convergence is proved. This made it possible to establish conditions for the existence of a unique solution of a semiperiodic boundary value problem for a system of second-order hyperbolic equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.