Eco-Friendly, non-toxic and biodegradable natural biopolymer electrolyte, Gellan Gum with Magnesium Chloride has been prepared by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, DSC and AC impedance analysis techniques. XRD study is used to analyze amorphous nature/crystalline nature of the polymer electrolyte. Complex formation between Gellan Gum and magnesium chloride salt has been studied by FTIR technique. The glass transition temperature (Tg) of the polymer electrolytes are obtained by DSC measurement. The highest ionic conductivity 2.91×10− 2 Scm− 1 has been obtained for electrolyte of 1.0 g Gellan Gum with 0.5 M.wt% MgCl2 from AC impedance analysis at room temperature. Transference number 0.97 has been obtained by Wagner’s polarization method for high conducting sample. The Mg2+ cationic transport number 0.35 has been found by Evan’s method for high conducting sample. Magnesium ion conducting battery has been constructed using the high conducting polymer electrolyte. Its open circuit voltage 2.39 V and the battery discharge characteristics are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.