SUMMARY MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility.
Age-related macular degeneration (AMD) is an expanding problem as longevity increases worldwide. While inflammation clearly contributes to vision loss in AMD, the mechanism remains controversial. Here we show that neutrophils are important in this inflammatory process. In the retinas of both early AMD patients and in a mouse model with an early AMD-like phenotype, we show neutrophil infiltration. Such infiltration was confirmed experimentally using ribbon-scanning confocal microscopy (RSCM) and IFNλ− activated dye labeled normal neutrophils. With neutrophils lacking lipocalin-2 (LCN-2), infiltration was greatly reduced. Further, increased levels of IFNλ in early AMD trigger neutrophil activation and LCN-2 upregulation. LCN-2 promotes inflammation by modulating integrin β1 levels to stimulate adhesion and transmigration of activated neutrophils into the retina. We show that in the mouse model, inhibiting AKT2 neutralizes IFNλ inflammatory signals, reduces LCN-2-mediated neutrophil infiltration, and reverses early AMD-like phenotype changes. Thus, AKT2 inhibitors may have therapeutic potential in early, dry AMD.
Summary microRNAs (miRNAs) are small noncoding RNAs that mediate post-transcriptional gene regulation and have emerged as essential regulators of many developmental events. The transcriptional network during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus, is well described and would serve as an excellent model to test functional contributions of miRNAs in embryogenesis. We examined the loss of function phenotypes of the major components of the miRNA biogenesis pathway. Inhibition of de novo synthesis of Drosha and Dicer in the embryo led to consistent developmental defects, a failure to gastrulate, and embryonic lethality, including changes in the steady state levels of transcription factors and signaling molecules involved in germ layer specification. We annotated and profiled small RNA expression from the ovary and several early embryonic stages by deep sequencing followed by computational analysis. All miRNAs have dynamic accumulation profiles through early development as do a large population of putative piRNAs (piwi-interacting RNAs). Defects in morphogenesis caused by loss of Drosha can be rescued with four miRNAs which permits a strong miRNA functional assay. Taken together our results indicate that post-transcriptional gene regulation directed by miRNAs is functionally important for early embryogenesis and is an integral part of the early embryonic gene regulatory network in S. purpuratus.
PurposeThe RPE cells have a major role in the development of dry age-related macular degeneration (AMD). We present novel evidence that βA3/A1-crystallin, encoded by the Cryba1 gene, a protein known to be important for lysosomal clearance in the RPE, also has a role in epithelial-to-mesenchymal transition (EMT) of RPE cells.MethodsRPE from dry AMD globes, genetically engineered mice lacking Cryba1 globally or specifically in the RPE, spontaneous mutant rats (Nuc1) with a loss-of-function mutation in Cryba1, and the melanoma OCM3 cell line were used. Spatial localization of proteins was demonstrated with immunofluorescence, gene expression levels were determined by quantitative PCR (qPCR), and protein levels by Western blotting. Cell movement was evaluated using wound healing and cell migration assays. Co-immunoprecipitation was used to identify binding partners of βA3/A1-crystallin.ResultsβA3/A1-crystallin is upregulated in polarized RPE cells compared to undifferentiated cells. Loss of βA3/A1-crystallin in murine and human RPE cells resulted in upregulation of Snail and vimentin, downregulation of E-cadherin, and increased cell migration. βA3/A1-crystallin binds to cortactin, and loss of βA3/A1-crystallin resulted in increased P-cortactinY421. The RPE from AMD samples had increased Snail and vimentin, and decreased E-cadherin, compared to age-matched controls.ConclusionsWe introduced a novel concept of dry AMD initiation induced by lysosomal clearance defects in the RPE and subsequent attempts by RPE cells to avoid the resulting stress by undergoing EMT. We demonstrate that βA3/A1-crystallin is a potential therapeutic target for AMD through rejuvenation of lysosomal dysfunction and potentially, reversal of EMT.
Development of complex multicellular organisms requires careful regulation at both transcriptional and post-transcriptional levels. Post-transcriptional gene regulation is in part mediated by a class of non-coding RNAs of 21–25 nucleotides in length known as microRNAs (miRNAs). β-catenin, regulated by the canonical Wnt signaling pathway, has a highly evolutionarily conserved function in patterning early metazoan embryos, in forming the Anterior-Posterior axis, and in establishing the endomesoderm. Using reporter constructs and site-directed mutagenesis, we identified at least three miRNA binding sites within the 3’ untranslated region (3’UTR) of the sea urchin β-catenin. Further, blocking these three miRNA binding sites within the β-catenin 3’UTR to prevent regulation of endogenous β-catenin by miRNAs resulted in a minor increase in β-catenin protein accumulation that is sufficient to induce aberrant gut morphology and circumesophageal musculature. These phenotypes are likely the result of increased transcript levels of Wnt responsive endomesodermal regulatory genes. This study demonstrates the importance of miRNA regulation of β-catenin in early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.