The aim of this paper is to present a method for modeling the lifespan of insulation materials in a partial discharge regime. Based on the design of experiments, it has many advantages: it reduces the number of time-consuming experiments, increases the accuracy of the results and allows lifespan modeling under various stress conditions including coupling effects between the factors. Accelerated aging tests are carried out to determine the lifespan of these materials. The resulting model presents an original relationship between the logarithm of the insulation lifespan and that of electrically applied stress and an exponential form of the temperature. Results show that the most influential factors can be identified according to their effects on the insulation lifespan. Moreover, the lifespan model validity is tested either with additional points which have not been used for modeling or through statistical tests. Finally, it is shown that fractional plans are not suitable to r e d u c e t h e n u m b e r o f e x p e r i m e n t s. T h i s a p p l i c a t i o n o f t h e experimental design is best used during the initial phase, before the final drive has been built and any on-line diagnostic.
A large amount of parameters related to both operating conditions and material design affects the electrical ageing of the low voltage rotating machine insulation. Accelerated ageing tests are usually undertaken in order to develop a theory to describe the electrical ageing process and to determine a lifetime model of these materials. However, to the best of our knowledge, there is no complete model allowing the prediction of an insulation lifetime from accelerated ageing tests, since there are many possible failure mechanisms and various synergetic effects between them. Another problem with accelerated ageing tests is that results of the tests tend to have a great deal of scatter. In the present work, we propose the use of the design of experiments (DoE) method, which is a useful statistical approach that would lead to a reliable and significant interpretation of the different ordering parameters of the insulation ageing process. Using the DoE method, the analysis of accelerated ageing test results allows identifying the factors that most influence the results, and those that do not, as well as details such as the existence of interactions and synergies between these factors. In the following, results from accelerated ageing tests on PEI varnishes, largely used in rotating machines insulation, are presented and analyzed with the DoE method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.