We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie, Lutz and Eigler in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we find that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.
We report GaAs/AlGaAs nanowires in the onedimensional (1D) quantum limit. The ultrathin wurtzite GaAs cores between 20-40 nm induce large confinement energies of several tens of meV, allowing us to experimentally resolve up to four well separated subband excitations in microphotoluminescence spectroscopy. Our detailed experimental and theoretical polarization-resolved study reveals a strong diameter-dependent anisotropy of these transitions: We demonstrate that the polarization of the detected photoluminescence is governed by the symmetry of the wurtzite 1D quantum wire subbands on the one hand, but also by the dielectric mismatch of the wires with the surrounding material on the other hand. The latter effect leads to a strong attenuation of perpendicularly polarized light in thin dielectric wires, making the thickness of the AlGaAs shell an important factor in the observed polarization behavior. Including the dielectric mismatch to our k.p-based simulated polarizationresolved spectra of purely wurtzite GaAs quantum wires, we find an excellent agreement between experiment and theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.