A number of recent studies testify that calcitriol alone or in combination with corticosteroids exerts strong immune modulatory activity. As a new approach, we evaluated the protolerogenic potential of calcitriol and dexamethasone in acute T helper (Th)1-mediated colitis in mice. A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg) was applied to BALB/c mice. Calcitriol and/or dexamethasone were administered i.p. from days 0 to 3 or 3 to 5 following the instillation of the haptenating agent. Assessment of colitis severity was performed daily. Colon tissue was analyzed macroscopically and microscopically, and myeloperoxidase activity, as well as cytokine levels [tumor necrosis factor-␣, interferon-␥, interleukin (IL)-12p70, IL-1, IL-10, IL-4] were determined by enzymelinked immunosorbent assay, T-bet, GATA family of transcription factors 3, a Th2 master regulator (GATA3), Foxp3, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), IL-23p19 and IL-17 expression by immunoblot analysis. The combination of the steroids most effectively reduced the clinical and histopathologic severity of TNBS colitis. Th1-related parameters were down-regulated, whereas Th2 markers like IL-4 and GATA3 were up-regulated. Apart from known steroid effects, calcitriol in particular promoted regulatory T cell profiles as indicated by a marked increase of IL-10, TGF, FoxP3, and CTLA4. Furthermore, analysis of dendritic cell mediators responsible for a proinflammatory differentiation of T cells revealed a significant reduction of IL-12p70 and IL23p19 as well as IL-6 and IL-17. Thus, our data support a rationale for a steroid-sparing, clinical application of calcitriol derivatives in inflammatory bowel disease. Furthermore they suggest that early markers of inflammatory dendritic cell and Th17 differentiation qualify as new target molecules for both calcitriol and highly selective immune-modulating vitamin D analogs.Calcitriol has been identified in a number of studies as a prominent negative regulator of T helper (Th1)-type immune responses, whereas Th2 responses are not affected or even augmented as indicated by an induction of T1/ST2 (Schmitz et al., 2005;Wang et al., 2005). Although these effects have been preferentially explained by direct effects on lymphocytes, subsequent studies clearly supported a role of calcitriol in modulating monocyte differentiation or dendritic cell (DC) maturation (Griffin et al., 2003). Calcitriol clearly reduced the transition of the innate immune stimulation to an adaptive inflammatory immune response by interfering with signal transducers and activators of transcription, interferon regulatory factor 1/4, and possibly with the molecular elements involved in cross-presentation (Penna and Adorini, 2000;Muthian et al., 2006). With respect to myeloid DC development, the phenotype of calcitriol-conditioned DC reflects an immature status with poor capacity to induce antigen-specific T cell proliferation and a tendency to promote tolerance in vivo (Mellman and Steinman, 2001).The immunoregu...
Following the present concepts, the synthetic sphingosine analog of myriocin FTY720 alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. However, several studies indicate that the immunosuppressive properties of FTY720 may alternatively be due to tolerogenic activities via modulation of dendritic cell differentiation or based on direct effects on CD4+CD25+ regulatory T cells (Treg). As Treg play an important role for the cure of inflammatory colitis, we used the Th1-mediated 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model to address the therapeutic potential of FTY720 in vivo. A rectal enema of TNBS was given to BALB/c mice. FTY720 was administered i.p. from days 0 to 3 or 3 to 5. FTY720 substantially reduced all clinical, histopathologic, macroscopic, and microscopic parameters of colitis analyzed. The therapeutic effects of FTY720 were associated with a down-regulation of IL-12p70 and subsequent Th1 cytokines. Importantly, FTY720 treatment resulted in a prominent up-regulation of FoxP3, IL-10, TGFβ, and CTLA4. Supporting the hypothesis that FTY720 directly affects functional activity of CD4+CD25+ Treg, we measured a significant increase of CD25 and FoxP3 expression in isolated lamina propria CD4+ T cells of FTY720-treated mice. The impact of FTY720 on Treg induction was further confirmed by concomitant in vivo blockade of CTLA4 or IL-10R which significantly abrogated its therapeutic activity. In conclusion, our data provide clear evidence that in addition to its well-established effects on migration FTY720 leads to a specific down-regulation of proinflammatory signals while simultaneously inducing functional activity of CD4+CD25+ Treg. Thus, FTY720 may offer a promising new therapeutic strategy for the treatment of IBD.
Neurons which lose part of their input respond with a compensatory increase in excitatory synaptic strength. This observation is of particular interest in the context of neurological diseases, which are accompanied by the loss of neurons and subsequent denervation of connected brain regions. However, while the cellular and molecular mechanisms of pharmacologically induced homeostatic synaptic plasticity have been identified to a certain degree, denervation-induced homeostatic synaptic plasticity remains not well understood. Here, we employed the entorhinal denervation in vitro model to study the role of tumor necrosis factor alpha (TNFα) on changes in excitatory synaptic strength of mouse dentate granule cells following partial deafferentation. Our experiments disclose that TNFα is required for the maintenance of a compensatory increase in excitatory synaptic strength at 3–4 days post lesion (dpl), but not for the induction of synaptic scaling at 1–2 dpl. Furthermore, laser capture microdissection combined with quantitative PCR demonstrates an increase in TNFα-mRNA levels in the denervated zone, which is consistent with our previous finding on a local, i.e., layer-specific increase in excitatory synaptic strength at 3–4 dpl. Immunostainings for the glial fibrillary acidic protein and TNFα suggest that astrocytes are a source of TNFα in our experimental setting. We conclude that TNFα-signaling is a major regulatory system that aims at maintaining the homeostatic synaptic response of denervated neurons.
Experiments were performed to study electron acceleration by intense sub-picosecond laser pulses propagating in sub-mm long plasmas of near critical electron density (NCD). Low density foam layers of 300-500 μm thickness were used as targets. In foams, the NCD-plasma was produced by a mechanism of super-sonic ionization when a well-defined separate ns-pulse was sent onto the foamtarget forerunning the relativistic main pulse. The application of sub-mm thick low density foam layers provided a substantial increase of the electron acceleration path in a NCD-plasma compared to the case of freely expanding plasmas created in the interaction of the ns-laser pulse with solid foils. The performed experiments on the electron heating by a 100 J, 750 fs short laser pulse of 2-5×10 19 W cm −2 intensity demonstrated that the effective temperature of supra-thermal electrons increased from 1.5-2 MeV in the case of the relativistic laser interaction with a metallic foil at high laser contrast up to 13 MeV for the laser shots onto the pre-ionized foam. The observed tendency towards a strong increase of the mean electron energy and the number of ultra-relativistic laseraccelerated electrons is reinforced by the results of gamma-yield measurements that showed a 1000fold increase of the measured doses. The experiment was supported by 3D-PIC and FLUKA simulations, which considered the laser parameters and the geometry of the experimental set-up. Both, measurements and simulations showed a high directionality of the acceleration process, since the strongest increase in the electron energy, charge and corresponding gamma-yield was observed close to the direction of the laser pulse propagation. The charge of super-ponderomotive electrons with energy above 30 MeV reached a very high value of 78 nC.
We report on enhanced laser driven electron beam generation in the multi MeV energy range that promises a tremendous increase of the diagnostic potential of high energy sub-PW and PW-class laser systems. In the experiment, an intense sub-picosecond laser pulse of ∼1019 Wcm−2 intensity propagates through a plasma of near critical electron density (NCD) and drives the direct laser acceleration (DLA) of plasma electrons. Low-density polymer foams were used for the production of hydrodynamically stable long-scale NCD-plasmas. Measurements show that relativistic electrons generated in the DLA-process propagate within a half angle of 1 2 ± 1° to the laser axis. Inside this divergence cone, an effective electron temperature of 10–13 MeV and a maximum of the electron energy of 100 MeV were reached. The high laser energy conversion efficiency into electrons with energies above 2 MeV achieved 23% with a total charge approaching 1 μC. For application purposes, we used the nuclear activation method to characterize the MeV bremsstrahlung spectrum produced in the interaction of the high-current relativistic electrons with high-Z samples and measured top yields of gamma-driven nuclear reactions. The optimization of the high-Z target geometry predicts an ultra-high MeV photon number of ∼1012 per shot at moderate relativistic laser intensity of 1019 Wcm−2. A good agreement between the experimental data and the results of the 3D-PIC and GEANT4-simulations was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.