DFNA9 is an autosomal dominant, nonsyndromic, progressive sensorineural hearing loss with vestibular pathology. Here we report three missense mutations in human COCH (previously described as Coch5b2), a novel cochlear gene, in three unrelated kindreds with DFNA9. All three residues mutated in DFNA9 are conserved in mouse and chicken Coch, and are found in a region containing four conserved cysteines with homology to a domain in factor C, a lipopolysaccharide-binding coagulation factor in Limulus polyphemus. COCH message, found at high levels in human cochlear and vestibular organs, occurs in the chicken inner ear in the regions of the auditory and vestibular nerve fibres, the neural and abneural limbs adjacent to the cochlear sensory epithelium and the stroma of the crista ampullaris of the vestibular labyrinth. These areas correspond to human inner ear structures which show histopathological findings of acidophilic ground substance in DFNA9 patients.
We identified Eyes absent 4 (EYA4), a member of the vertebrate Eya family of transcriptional activators, as the causative gene of postlingual, progressive, autosomal dominant hearing loss at the DFNA10 locus. In two unrelated families from Belgium and the USA segregating for deafness at this locus, we found different mutations in EYA4, both of which create premature stop codons. Although EYA proteins interact with members of the SIX and DACH protein families in a conserved network that regulates early embryonic development, this finding shows that EYA4 is also important post-developmentally for continued function of the mature organ of Corti.
The etiology of primary open angle glaucoma, a leading cause of age-related blindness, remains poorly defined, although elevated intraocular pressure (IOP) contributes to the disease progression. To better understand the mechanisms causing elevated IOP from aqueous humor circulation, we pursued proteomic analyses of trabecular meshwork (TM) from glaucoma and age-matched control donors. These analyses demonstrated that Cochlin, a protein associated with deafness disorder DFNA9, is present in glaucomatous but absent in normal TM. Cochlin was also detected in TM from the glaucomatous DBA/2J mouse preceding elevated IOP but found to be absent in three other mouse lines that do not develop elevated IOP. Histochemical analyses revealed co-deposits of Cochlin and mucopolysaccharide in human TM around Schlemm's canal, similar to that observed in the cochlea in DFNA9 deafness. Purified Cochlin was found to aggregate after sheer stress and to induce the aggregation of TM cells in vitro. Age-dependent in vivo increases in Cochlin were observed in glaucomatous TM, concomitant with a decrease in type II collagen, suggesting that Cochlin may disrupt the TM architecture and render components like collagen more susceptible to degradation and collapse. Overall, these observations suggest that Cochlin contributes to elevated IOP in primary open angle glaucoma through altered interactions within the TM extracellular matrix, resulting in cell aggregation, mucopolysaccharide deposition, and significant obstruction of the aqueous humor circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.