Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.
At present, the diagnosis of multiple sclerosis (MS) relies heavily on the use of MRI, which can demonstrate disease dissemination in space and time [1][2][3][4] . The current 2010 McDonald criteria have enabled earlier diagnosis 5,6 and initiation of disease-modifying treatment, with substantial benefits for disease outcome 7,8 , but they still have imperfect sensitivity and specificity 9,10 . The limited accuracy of the criteria results in challenging cases and misdiagnosis, which are prevalent problems in MS 11,12 . Therefore, more-accurate and pathologically specific MRI criteria are still needed to exclude other disorders that can mimic MS 13,14 .The MRI-detectable central vein inside white matter lesions has recently been proposed as a biomarker of inflammatory demyelination and, thus, may aid the diagnosis of MS 15 . The 'central vein sign' (CVS) has been investigated in various neurological conditions by several groups, and evidence has accumulated that the CVS may have the ability to accurately differentiate MS from its mimics [15][16][17][18][19][20][21] . As a consequence, recent guidelines from the Magnetic Resonance Imaging in MS (MAGNIMS) group 1,4 and the Consortium of MS Centers (CMSC) task force 22 have acknowledged the potential of the CVS and its dedicated MRI acquisitions for the differential diagnosis of MS, while calling for further research before considering a possible modification of the diagnostic criteria. However, the lack of standardization for the definition and imaging of the CVS, as well as a dearth of large-scale prospective studies evaluating the CVS for MS diagnosis, are currently preventing the clinical validation of this potential biomarker 1,23 .This Consensus Statement aims to provide recommendations for the definition, standardization and clinical evaluation of the CVS in the diagnosis of MS. These statements are based on a thorough review of the existing literature on the CVS and the consensus opinion of the members of the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative. E X P E RT C O N S E N S U S D O C U M E N T on behalf of the NAIMS CooperativeAbstract | Over the past few years, MRI has become an indispensable tool for diagnosing multiple sclerosis (MS). However, the current MRI criteria for MS diagnosis have imperfect sensitivity and specificity. The central vein sign (CVS) has recently been proposed as a novel MRI biomarker to improve the accuracy and speed of MS diagnosis. Evidence indicates that the presence of the CVS in individual lesions can accurately differentiate MS from other diseases that mimic this condition. However, the predictive value of the CVS for the development of clinical MS in patients with suspected demyelinating disease is still unknown. Moreover, the lack of standardization for the definition and imaging of the CVS currently limits its clinical implementation and validation. On the basis of a thorough review of the existing literature on the CVS and the consensus opinion of the members of the North American Imaging in Mult...
Gray matter brain structures, including deep nuclei and the cerebral cortex, are affected significantly and early in the course of multiple sclerosis and these changes may not be directly related to demyelinating white matter lesions. The hippocampus is an archicortical structure that is critical for memory functions and is especially sensitive to multiple insults including inflammation. We used high-resolution MR imaging at 3.0 T to measure hippocampal volumes in relapsing remitting MS (RRMS) and secondary progressive MS (SPMS) patients and controls. We found that both groups of MS patients had hippocampal atrophy and that this volume loss was in excess of global brain atrophy. Subregional analysis revealed selective volume loss in the cornu ammonis (CA) 1 region of the hippocampus in RRMS with further worsening of CA1 loss and extension into other CA regions in SPMS. Hippocampal atrophy was not correlated with T2-lesion volumes, and right and left hippocampi were affected equally. Volume loss in the hippocampus and subregions was correlated with worsening performance on word-list learning, a task requiring memory encoding, but not with performance on the Paced Auditory Serial Addition Task (PASAT), a test of information processing speed. Our findings provide evidence for selective and progressive hippocampal atrophy in MS localized initially to the CA1 subregion that is associated with deficits in memory encoding and retrieval. The underlying histopathological substrate for this selective, symmetric and disproportionate regional hippocampal vulnerability remains speculative at this time. Further understanding of this process could provide targets for therapeutic interventions including neuroprotective treatments.
The mechanisms controlling axon guidance are of fundamental importance in understanding brain development. Growing corticospinal and somatosensory axons cross the midline in the medulla to reach their targets and thus form the basis of contralateral motor control and sensory input. The motor and sensory projections appeared uncrossed in patients with horizontal gaze palsy with progressive scoliosis (HGPPS). In patients affected with HGPPS, we identified mutations in the ROBO3 gene, which shares homology with roundabout genes important in axon guidance in developing Drosophila , zebrafish, and mouse. Like its murine homolog Rig1/Robo3, but unlike other Robo proteins, ROBO3 is required for hindbrain axon midline crossing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.