Background: Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease caused by vascular remodeling of the pulmonary arteries with elevated pulmonary vascular resistance. Recently, various pulmonary vasodilator drugs have become available in the clinical field, and have dramatically ameliorated the prognosis of IPAH. However, little is known about how the mechanical properties of pulmonary arterial smooth muscle cells (PASMCs) are altered under drug supplementation.Methods: Atomic force microscopy (AFM) was used to investigate the mechanical properties of PASMCs derived from a patient with IPAH (PAH-PASMCs) and a healthy control (N-PASMCs) which received the supplementation of clinically used drugs for IPAH: sildenafil, macitentan, and riociguat.Results: PASMCs derived from PAH-PASMCs were stiffer than those derived from N-PASMCs. With sildenafil treatment, the apparent Young's modulus (E 0 ) of cells significantly decreased in PAH-PASMCs but remained unchanged in N-PASMCs. The decrease in E 0 of PAH-PASMCs was also observed in macitentan and riociguat treatment. The stress relaxation AFM revealed that the decrease in E 0 of PAH-PASMCs resulted from a decrease in the cell elastic modulus and/or increase in cell fluidity. The combination treatment of maci-tentan and riociguat showed an additive effect on cell mechanical properties, implying that this clinically accepted combination therapy for IPAH influences the intracellular mechanical components.Conclusions: Pulmonary vasodilator drugs affect the mechanical properties of PAH-PASMCs, and there exists a mechanical effect of combination treatment on PAH-PASMCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.