Longitudinal bone growth can be suppressed by compressive loading. In this study, we applied three different magnitudes (17, 8.5, and 4N) of compressive force to growing rat ulnas 10 minutes/day for 8 days and investigated the effects on the distal growth plate biology. Further, to investigate growth rate recovery after cessation of loading, we examined rats 7 days after the loading period. Longitudinal growth of the ulna was suppressed in a dose-dependent manner by applied compressive force. In the 17N group, the longitudinal mineralization rate (LMR) at the distal growth plate was suppressed completely by loading and did not recover. However, in the 8.5N and 4N groups, LMR suppression recovered in 1 week. In the 17N group, growth plate height and hypertrophic zone height were significantly greater than control; the number of hypertrophic chondrocytes was increased; and some traumatic changes such as cracks in the growth plate were found. In addition, 17N loading suppressed cartilage mineralization and capillary invasion beneath the growth plate, although the number of chondrocytes synthesizing vascular endothelial growth factor (VEGF) was increased. Our study shows longitudinal growth suppression caused by axial loading of the ulna, which is proportional to the magnitude of load. Only the largest load (17N) caused morphological changes in the distal growth plate cartilage. There was no association found between mineralization and type X collagen localization or capillary invasion and VEGF expression.
Collagen expression is coupled to cell structure in connective tissue. We propose that nuclear matrix architectural transcription factors link cell shape with collagen promoter geometry and activity. We previously indicated that nuclear matrix proteins (NP/NMP4) interact with the rat type I collagen β£1(I) polypeptide chain (COL1A1) promoter at two poly(dT) sequences (sites A and B) and bend the DNA. Here, our objective was to determine whether NP/NMP4-COL1A1 binding influences promoter activity and to clone NP/NMP4. Promoter-reporter constructs containing 3.5 kilobases (kb) of COL1A1 5 flanking sequence were fused to a reporter gene. Mutation of site A or site B increased promoter activity in rat UMR-106 osteoblast-like cells. Several full-length complementary DNAs (cDNAs) were isolated from an expression library using site B as a probe. These clones expressed proteins with molecular weights and COL1A1 binding activity similar to NP/NMP4. Antibodies to these proteins disrupted native NP/NMP4-COL1A1 binding activity. Overexpression of specific clones in UMR-106 cells repressed COL1A1 promoter activity. The isolated cDNAs encode isoforms of Cys 2 His 2 zinc finger proteins that contain an AT-hook, a motif found in architectural transcription factors. Some of these isoforms recently have been identified as Cas-interacting zinc finger proteins (CIZ) that localize to fibroblast focal adhesions and enhance metalloproteinase gene expression. We observed NP/NMP4/CIZ expression in osteocytes, osteoblasts, and chondrocytes in rat bone. We conclude that NP/NMP4/CIZ is a novel family of nuclear matrix transcription factors that may be part of a general mechanical pathway that couples cell structure and function during extracellular matrix remodeling. (J Bone Miner Res 2001;16:10 -23)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.