No abstract
We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument of knowledge with the following three efficiency properties for computing and proving a (non-deterministic, polynomial time) parallel RAM computation that can be computed in parallel time T with at most p processors: — The prover’s (parallel) running time is \(T + \mathrm{poly}\hspace{-2.0pt}\log (T \cdot p) \) . (In other words, the prover’s running time is essentially T for large computation times!) — The prover uses at most \(p \cdot \mathrm{poly}\hspace{-2.0pt}\log (T \cdot p) \) processors. — The communication and verifier complexity are both \(\mathrm{poly}\hspace{-2.0pt}\log (T \cdot p) \) . The combination of all three is desirable as it gives a way to leverage a moderate increase in parallelism in favor of near-optimal running time. We emphasize that even a factor two overhead in the prover’s parallel running time is not allowed. Our main contribution is a generic construction of SPARKs from any succinct argument of knowledge where the prover’s parallel running time is \(T \cdot \mathrm{poly}\hspace{-2.0pt}\log (T \cdot p) \) when using p processors, assuming collision-resistant hash functions. When suitably instantiating our construction, we achieve a four-round SPARK for any parallel RAM computation assuming only collision resistance. Additionally assuming the existence of a succinct non-interactive argument of knowledge (SNARK), we construct a non-interactive SPARK that also preserves the space complexity of the underlying computation up to \(\mathrm{poly}\hspace{-2.0pt}\log (T\cdot p) \) factors. We also show the following applications of non-interactive SPARKs. First, they immediately imply delegation protocols with near optimal prover (parallel) running time. This, in turn, gives a way to construct verifiable delay functions (VDFs) from any sequential function. When the sequential function is also memory-hard, this yields the first construction of a memory-hard VDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.