Experimental studies of Alzheimer's disease have largely depended on transgenic mice overexpressing amyloid precursor protein (APP). These mice, however, suffer from artificial phenotypes because, in addition to amyloid β peptide (Aβ), they overproduce other APP fragments. We generated knock-in mice that harbor Swedish and Beyreuther/Iberian mutations with and without the Arctic mutation in the APP gene. The mice showed typical Aβ pathology, neuroinflammation and memory impairment in an age-dependent manner.
Aβ42 is known to be a primary amyloidogenic and pathogenic agent in Alzheimer's disease. However, the role of Aβ43, found just as frequently in patient brains, remains unresolved. We generated knockin mice containing a pathogenic presenilin-1 R278I mutation that causes overproduction of Aβ43. Homozygous mice exhibited embryonic lethality, indicating that the mutation involves loss of function. Crossing amyloid precursor protein transgenic mice with heterozygous mutant mice resulted in elevation of Aβ43 levels, impairment of short-term memory, and acceleration of Aβ pathology, accompanying pronounced accumulation of Aβ43 in plaque cores similar to the biochemical composition observed in patient brains. Consistently, Aβ43 showed a higher propensity to aggregate and was more neurotoxic than Aȕ42. Other pathogenic presenilin mutations also caused overproduction of Aβ43 in a manner correlating with Aβ42 and with age of disease onset. These findings indicate that Aβ43, an overlooked species, is potently amyloidogenic, neurotoxic, and abundant in vivo. 3 Alzheimer's disease, the most common form of dementia, is characterized by two pathological features in the brain, extracellular senile plaques and intracellular neurofibrillary tangles. Senile plaques consist of amyloid-β peptide (Aβ) generated from amyloid precursor protein (APP) through sequential proteolytic processing by β-secretase and γ-secretase. Two major forms of Aβ exist, Aβ40 and Aβ42, with Aβ42 being more neurotoxic due to its higher hydrophobicity, which results in faster oligomerization and aggregation 1 . A number of mutations associated with early-onset familial Alzheimer's disease (FAD) have been identified in the APP, PSEN1 and PSEN2 genes, and these mutations lead to accelerated production of Aβ42 or an increase in the Aβ42/Aβ40 ratio. Together these findings indicate that Aβ42 plays an essential role in the initiation of pathogenesis. However, the possible involvement of longer Aβ species that also exist in Alzheimer's disease brains has not yet been fully investigated.Thus far, various longer Aβ species, such as Aβ43, Aβ45, Aβ48, Aβ49 and Aβ50, have been qualitatively described in Alzheimer's disease brains 2 . Similar Aβ species have also been found in transgenic mice that overexpress APP carrying FAD-linked mutations 3 . Further quantitative studies have revealed that Aβ43 is deposited more frequently than Aβ40 in both sporadic Alzheimer's disease (SAD) and FAD [4][5][6][7] .How these Aβ species with different C-terminal ends are generated from the precursor has mainly been investigated by cell biological and biochemical methods. A number of studies 8,9 demonstrated that γ/ε-cleavage by γ-secretase activity controls the fate of the C-terminal end. Aβ43, generated from Aβ49 via Aβ46, is subsequently converted to Aβ40 by γ-secretase whereas Aβ42 is independently generated from Aβ48 via Aβ45. It has also been reported that the FAD-associated I213T mutation in the PSEN1 gene increases the generation of longer Aβ species, such as Aβ43, Aβ45 a...
To understand the molecular processes that link Aβ amyloidosis, tauopathy and neurodegeneration, we screened for tau-interacting proteins by immunoprecipitation/LC-MS. We identified the carboxy-terminal PDZ ligand of nNOS (CAPON) as a novel tau-binding protein. CAPON is an adaptor protein of neuronal nitric oxide synthase (nNOS), and activated by the N-methyl-D-aspartate receptor. We observed accumulation of CAPON in the hippocampal pyramidal cell layer in the App NL-G-F -knock-in (KI) brain. To investigate the effect of CAPON accumulation on Alzheimer’s disease (AD) pathogenesis, CAPON was overexpressed in the brain of App NL-G-F mice crossbred with MAPT (human tau)-KI mice. This produced significant hippocampal atrophy and caspase3-dependent neuronal cell death in the CAPON-expressing hippocampus, suggesting that CAPON accumulation increases neurodegeneration. CAPON expression also induced significantly higher levels of phosphorylated, oligomerized and insoluble tau. In contrast, CAPON deficiency ameliorated the AD-related pathological phenotypes in tauopathy model. These findings suggest that CAPON could be a druggable AD target.
Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.