Fruits and vegetables are the most utilized commodities among all horticultural crops. They are consumed raw, minimally processed, as well as processed, due to their nutrients and health-promoting compounds. With the growing population and changing diet habits, the production and processing of horticultural crops, especially fruits and vegetables, have increased very significantly to fulfill the increasing demands. Significant losses and waste in the fresh and processing industries are becoming a serious nutritional, economical, and environmental problem. For example, the United Nations Food and Agriculture Organization (FAO) has estimated that losses and waste in fruits and vegetables are the highest among all types of foods, and may reach up to 60%. The processing operations of fruits and vegetables produce significant wastes of by-products, which constitute about 25% to 30% of a whole commodity group. The waste is composed mainly of seed, skin, rind, and pomace, containing good sources of potentially valuable bioactive compounds, such as carotenoids, polyphenols, dietary fibers, vitamins, enzymes, and oils, among others. These phytochemicals can be utilized in different industries including the food industry, for the development of functional or enriched foods, the health industry for medicines and pharmaceuticals, and the textile industry, among others. The use of waste for the production of various crucial bioactive components is an important step toward sustainable development. This review describes the types and nature of the waste that originates from fruits and vegetables, the bioactive components in the waste, their extraction techniques, and the potential utilization of the obtained bioactive compounds.
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Bioactive compounds possess different health benefits. Onion contains various bioactive compounds, such as organosulfur compounds, flavonols, ascorbic acids, and carbohydrate prebiotics, and its by‐products have more content of flavonoids than the bulb. Diallyl monosulfide, diallyl disulfide, diallyl trisulfide, and diallyl tetrasulfide are the major organosulfur compounds, whereas quercetin, kaempferol, anthocyanin, and luteolin are considered as main flavonoids. Ascorbic acid and fructooligosaccharides are also regarded as bioactive compounds. Onion bioactive compounds have the strong antioxidant potential for neutralizing oxidative stress of the cells. These bioactive components are beneficial as anticarcinogenic, antibiotic, anti‐inflammatory, antiplatelet, antidiabetic, and cardioprotective agents along with other nutritional benefits. However, various postharvest practices have an impact on these bioactive compounds, for example, curing mostly enhances the bioactive level and processing temperature generally decreases the concentration of many of them, whereas storage studies suggest an increase of others under optimized conditions. Additionally, conventional extraction techniques showed a negative impact on bioactive compounds of onion, whereas innovative methods yielded a higher amount of bioactive components. There is a need for innovative and integrated procedures in the postharvest sector to maintain or enhance the level of bioactive compounds without compromising the quality of onions. The present review comprehensively describes different bioactive compounds of onion, their chemistry, and their pharmacotherapeutic roles. Moreover, it also explores the effects of various postharvest factors, such as temperature, storage duration, and extraction conditions on the level of the bioactive components. It also suggests industrial applications of onion waste and its bioactive compounds in the food sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.