Cocaine covalently modifies proteins through a reaction in which the methyl ester of cocaine acylates the -amino group of lysine residues. This reaction is highly specific in vitro, because no other amino acid reacts with cocaine, and only cocaine's methyl ester reacts with the lysine side chain. Covalently modified proteins were present in the plasma of rats and human subjects chronically exposed to cocaine. Modified endogenous proteins are immunogenic, and specific antibodies were elicited in mouse and detected in the plasma of human subjects. Covalent modification of proteins could explain cocaine's autoimmune effects and provide a new biochemical approach to cocaine's long-term actions.
Potential medications for cocaine abusers include: anticocaine catalytic antibodies, which could serve as circulating peripheral blockers of cocaine that prevents its action in the brain; and 3-phenyltropane cocaine analogs, which could serve as potent, selective, and long-lasting substitutes that reduce drug-seeking. In order to evaluate the compatibility of these agents, we measured if a catalytic antibody would bind and interact with some cocaine analogs. Anticocaine catalytic antibody 15A10 had no significant affinity for RTI-51, RTI-112, or RTI-177 as examined by ELISA. They exhibited high affinity for the immunogen TSA1 in the same experiment, as expected. Because the antibody and the RTI compounds do not interact, they are candidates for simultaneous use.
A new strategy in transition-state analog design is demonstrated to elicit catalytic antibodies. The strategy is based on substrate-assisted antibody catalysis and utilizes analogs designed to mimic the transition-state for intramolecular catalysis and thereby favor antibodies that can recruit catalytic groups from substrate. The hydrolysis of the benzoyl ester of cocaine provides an illustration. The benzoyl ester of cocaine is distant from the protonated nitrogen in the stable chair conformer but proximate in the strained boat form. An antibody stabilizing the boat form and approximating ester and amine could catalyze ester hydrolysis. To mimic the transition-state for the intramolecular catalysis, we synthesized a cocaine analog that replaces this ester with a methylenephenylphosphinate bridge to the tropane nitrogen. This bridged analog elicited 85 cocaine esterases out of 450 anti-analog antibodies-a performance markedly superior to that of a simple phosphonate ester-based analog with an identical tether. The correspondence of the analog to a "high energy" conformer eliminated product inhibition. For certain polyfunctional targets, substrate assistance can be an effective strategy for eliciting catalytic antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.