Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Etoposide is one of the most effective chemotherapeutic agents used in the treatment of various types of cancers. However, as a Topoisomerase II inhibitor, during clinical use, several side effects may occur. In addition, in several in vivo and in vitro studies, etoposide has been shown to have a range of genotoxic effects including single and double strand breaks. Melatonin is an anti-aging and antioxidant hormone synthesized from the pineal gland. The genoprotective, antioxidant, and free radical scavenger properties of melatonin have been well explained in various studies. The aim of this study was to explore whether melatonin nanoparticles protects against etoposide-induced genotoxicity in the HepG2 cell line. HepG2 cells (25 × 104 cells/well) were cultured in 24-well plates: a control group and 3 melatonin and its nanoparticles + etoposide groups (pre- and cotreatment conditions). Our results show that etoposide induced a noticeable genotoxic effect in HepG2 cells. Melatonin reduced the effects of etoposide significantly in both types of experiment conditions, through the reduction of the level of DNA damage measured via comet assay. Furthermore, melatonin decreased the intracellular reactive oxygen species generation. It also increased the intracellular glutathione levels in HepG2 cells. Nano melatonin is more effective than regular melatonin. The most protective effect was observed with melatonin when it was administrated 24 h before etoposide treatment.
BACKGROUND: Gastric adenocarcinoma is the fourth most common cause of cancer-associated death worldwide. OBJECTIVE: We evaluated the immunological status of patients with gastric cancer before surgery and circulating cytokines as potential diagnostic biomarkers for gastric cancer. METHODS: We included 90 healthy controls and 95 patients with distal Gastric adenocarcinoma in Mazandaran, Sari, Iran. We measured serum IL-2, IL-10 and IL-12 Levels by a sandwich enzyme-linked immunosorbent assay using the IBL international GMBH kit. RESULTS: The serum IL-10 levels in the patients with Gastric adenocarcinoma were significantly higher than those of the healthy controls (P=0.02). There were no significant differences in serum IL-2 and IL-12 levels between patients with gastric cancer and healthy controls. CONCLUSION: Increased levels of IL-10 might be useful as diagnostic biomarkers for Gastric adenocarcinoma; however, this needs to be confirmed with larger number of patients and with control groups other than blood donors, properly age paired. These results suggest that positive expression of IL-10 may be useful as a molecular marker to distinguish stage of gastric cancers which can be more readily controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.