Echinochrome A (Ech A) is a naphthoquinoid pigment from sea urchins that possesses antioxidant, antimicrobial, anti-inflammatory and chelating abilities. Although Ech A is the active substance in the ophthalmic and cardiac drug Histochrome®, its underlying cardioprotective mechanisms are not well understood. In this study, we investigated the protective role of Ech A against toxic agents that induce death of rat cardiac myoblast H9c2 cells and isolated rat cardiomyocytes. We found that the cardiotoxic agents tert-Butyl hydroperoxide (tBHP, organic reactive oxygen species (ROS) inducer), sodium nitroprusside (SNP; anti-hypertension drug), and doxorubicin (anti-cancer drug) caused mitochondrial dysfunction such as increased ROS level and decreased mitochondrial membrane potential. Co-treatment with Ech A, however, prevented this decrease in membrane potential and increase in ROS level. Co-treatment of Ech A also reduced the effects of these cardiotoxic agents on mitochondrial oxidative phosphorylation and adenosine triphosphate level. These findings indicate the therapeutic potential of Ech A for reducing cardiotoxic agent-induced damage.
The aim of this study was to examine the in vitro antioxidant and antiviral activities of echinochrome A and echinochrome-based antioxidant composition against tick-borne encephalitis virus (TBEV) and herpes simplex virus type 1 (HSV-1). The antioxidant composition, which is a mixture of echinochrome A, ascorbic acid, and α-tocopherol (5:5:1), showed higher antioxidant and antiviral effects than echinochrome A. We suppose that echinochrome A and its composition can both directly affect virus particles and indirectly enhance antioxidant defense mechanisms in the hosting cell. The obtained results allow considering the echinochrome A and the composition of antioxidants on its basis as the promising agents with the both antioxidant and antiviral activities.
Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis.
Using high-performance liquid chromatography with diode-array detection and mass spectrometry (HPLC-DAD/MS) we investigated the composition of polyhydroxynaphthoquinone (PHNQ) pigments from sea urchins Strongylocentrotus pallidus, St. polyacanthus, St. droebachiensis, Brisaster latifrons and Echinarachnius parma, collected in the Sea of Okhotsk and the Bering Sea. Identification of PHNQ pigments from sea urchins St. polyacanthus, B. latifrons, and E. parma was performed for the first time. Among the usual PHNQ pigments, mono- and dimethoxy derivatives of spinochrome E, not previously found in other sea urchins, were discovered in St. polyacanthus and St. droebachiensis. In St. droebachiensis, two monomethoxy derivatives of echinochrome A were detected, isolated previously from only tropical sea urchins. It was found that the composition and total content of pigments of St. droebachiensis depends on the collection area of the sea urchins and its depth and varies from 88 to 331 μg/g of dry shells. Sea urchins St. pallidus, B. latifrons and E. parma had average values for PHNQ pigment content, approximately 30 μg/g, and St. polyacanthus had a low PHNQ content, 13 μg/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.