Purpose of Review Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recent Findings Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Summary Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.
With the advent of advanced sequencing technology, studies of RNA viruses have shown that genetic diversity can contribute to both attenuation and virulence and the paradigm is that this is controlled by the error-prone RNA-dependent RNA polymerase (RdRp). Since wild-type yellow fever virus (YFV) strain Asibi has genetic diversity typical of a wild-type RNA virus, while 17D virus vaccine has limited diversity, it provides a unique opportunity to investigate RNA population theory in the context of a well-characterized live attenuated vaccine. Utilizing infectious clone-derived viruses, we show that genetic diversity of RNA viruses is complex and that multiple genes, including structural genes and NS2B and NS4B genes also contribute to genetic diversity. We suggest that the replication complex as a whole, rather than only RdRp, drives genetic diversity, at least for YFV.
Zika virus (ZIKV) strains belong to the East African, West African, and Asian/American phylogenetic lineages. RNA viruses, like ZIKV, exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. Genetic diversity of representative ZIKVs from each lineage was examined using next generation sequencing (NGS) paired with downstream entropy and single nucleotide variant (SNV) analysis. Comparisons showed that inter-lineage diversity was statistically supported, while intra-lineage diversity. Intra-lineage diversity was significant for East but not West Africa strains. Furthermore, intra-lineage diversity for the Asian/American lineage was not supported for human serum isolates; however, a placenta isolate differed significantly. Relative in the pre-membrane/membrane (prM/M) gene of several ZIKV strains. Additionally, the East African lineage contained a greater number of synonymous SNVs, while a greater number of non-synonymous SNVs were identified for American strains. Further, inter-lineage SNVs were dispersed throughout the genome, whereas intra-lineage non-synonymous SNVs for Asian/American strains clustered within prM/M and NS1 gene. This comprehensive analysis of ZIKV genetic diversity provides a repository of SNV positions across lineages. We posit that increased non-synonymous SNV populations and increased relative genetic diversity of the prM/M and NS1 proteins provides more evidence for their role in ZIKV virulence and fitness.
A cute respiratory diseases (ARD) are caused by numerous viral pathogens, including several human adenovirus (HAdV) types. Respiratory HAdV infections range from mild to severe and are fatal in some cases. HAdV-associated respiratory disease has threatened military readiness, and an increasing number of outbreaks and isolated cases documented in civilian communities in the United States and other countries (1-4) indicate that it is an emerging threat to public health. The live oral HAdV type 4 and type 7 vaccines are highly effective against the 2 dominant
Human adenoviruses (AdV) are mostly associated with minimal pathology. However, more severe respiratory tract infections and acute respiratory diseases, most often caused by AdV-4 and AdV-7, have been reported. The only licensed vaccine in the United States, live oral AdV-4 and AdV-7 vaccine, is indicated for use in the military, nearly exclusively in recruit populations. The excellent safety profile and prominent antibody response of the vaccine is well established by placebo-controlled clinical trials, while, long-term immunity of vaccination has not been studied. Serum samples collected over 6 years from subjects co-administered live oral AdV-4 and AdV-7 vaccine in 2011 were evaluated to determine the duration of the antibody response. Group geometric mean titers (GMT) at 6 years post vaccination compared to previous years evaluated were not significantly different for either AdV-4 or AdV-7 vaccine components. There were no subjects that demonstrated waning neutralization antibody (NAb) titers against AdV-4 and less than 5% of subjects against AdV-7. Interestingly, there were subjects that had a four-fold increase in NAb titers against either AdV-4 or AdV-7, at various time points post vaccination, suggesting either homotypic or heterotypic re-exposure. This investigation provided strong evidence that the live oral AdV-4 and AdV-7 vaccine induced long-term immunity to protect from AdV-4 and AdV-7 infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.