The Miocene epoch (23.03-5.33 Ma) was a time interval of global warmth, relative to today.Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval-the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO 2 , and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO 2 (∼400-600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models-the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies. Plain Language Summary During the Miocene time period (∼23-5 million years ago),Planet Earth looked similar to today, with some important differences: the climate was generally warmer and highly variable, while atmospheric CO 2 was not much higher. Continental-sized ice sheets were only present on Antarctica, but not in the northern hemisphere. The continents drifted to near their modernday positions, and plants and animals evolved into the many (near) modern species. Scientists study the Miocene because present-day and projected future CO 2 levels are in the same range as those reconstructed for the Miocene. Therefore, if we can understand climate changes and their biotic responses from the Miocene past, we are able to better predict current and future global changes. By comparing Miocene climate reconstructions from fossil and chemical data to climate simulations produced by computer models, scientists are able to test their understanding of the Earth system under higher CO 2 and warmer conditions than those of today. This helps in constraining future warming scenarios for the coming STEINTHORSDOTTIR ET AL.
As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted.
In early 2018, Cape Town (population ~3.7 million) was at risk of being one of the first major metropolitan areas in the world to run out of water. This was due to a severe multi-year drought that led to the levels of supply dams falling to an unprecedented low. Here we analyze rainfall data from the city catchment areas, including rare centennial records from the surrounding region, to assess the severity of the 2015–2017 drought. We find that there has been a long-term decline in the number of winter rainfall days, but this trend has been generally masked by fluctuations in rainfall intensity. The recent drought is unprecedented in the centennial record and represents a combination of the long-term decline in rainfall days and a more recent decline in rainfall intensity. Cold fronts during the winter months are responsible for most of the rainfall reaching Cape Town and our analysis shows no robust regional trend in the number of fronts over the last 40 years. Rather, the observed multidecadal decline in rainfall days, which threatens to increase the occurrence of severe drought, appears to be linked to a decrease in the duration of rainfall events associated with cold fronts. This change in rainfall characteristics associated with fronts appears to be linked to Hadley Cell expansion seen across the Southern Hemisphere and an increasing trend in post-frontal high-pressure conditions that suppress orographically enhanced rainfall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.