-The extreme drought event that occurred in Western Europe during 2003 highlighted the need to understand the key processes that may allow trees and stands to overcome such severe water shortages. We therefore reviewed the current knowledge available about such processes. First, impact of drought on exchanges at soil-root and canopy-atmosphere interfaces are presented and illustrated with examples from water and CO 2 flux measurements. The decline in transpiration and water uptake and in net carbon assimilation due to stomatal closure has been quantified and modelled. The resulting models were used to compute water balance at stand level basing on the 2003 climate in nine European forest sites from the CARBOEUROPE network. Estimates of soil water deficit were produced and provided a quantitative index of soil water shortage and therefore of the intensity of drought stress experienced by trees during summer 2003. In a second section, we review the irreversible damage that could be imposed on water transfer within trees and particularly within xylem. A special attention was paid to the inter-specific variability of these properties among a wide range of tree species. The inter-specific diversity of hydraulic and stomatal responses to soil water deficit is also discussed as it might reflect a large diversity in traits potentially related to drought tolerance. Finally, tree decline and mortality due to recurrent or extreme drought events are discussed on the basis of a literature review and recent decline studies. The potential involvement of hydraulic dysfunctions or of deficits in carbon storage as causes for the observed long term (several years) decline of tree growth and development and for the onset of tree dieback is discussed. As an example, the starch content in stem tissues recorded at the end of the 2003's summer was used to predict crown conditions of oak trees during the following spring: low starch contents were correlated with large twig and branch decline in the crown of trees. drought / water balance / time lag effect / hydraulic properties / dieback Résumé -Arbres et peuplements forestiers tempérés soumis à sécheresse : une revue des réponses écophysiologiques, des processus d'adaptation et des conséquences à long terme. La sécheresse exceptionnelle de 2003 a été l'occasion de faire le point de nos connaissances sur les mécanismes écophysiologiques permettant aux arbres de traverser un tel évènement climatique extrême. L'analyse a été conduite à l'échelle de l'arbre et du peuplement, tandis que l'intensité de la sécheresse a été quantifiée à l'aide d'un calcul de bilan hydrique sur neuf sites forestiers européens contrastés du réseau CARBOEUROPE. Le rôle du couvert dans les échanges avec l'atmosphère est rappelé puis intégré dans l'analyse des réductions de bilan d'eau et de carbone en 2003 dus à la régulation stomatique. Les caractéristiques du complexe sol-racine, important à la fois pour l'accès à la ressource et à l'efficience de son absorption, constituent un des premiers traits d'ada...
Leaf area index (LAI) is the total one-sided area of leaf tissue per unit ground surface area. It is a key parameter in ecophysiology, especially for scaling up the gas exchange from leaf to canopy level. It characterizes the canopy-atmosphere interface, where most of the energy fluxes exchange. It is also one of the most difficult to quantify properly, owing to large spatial and temporal variability. Many methods have been developed to quantify LAI from the ground and some of them are also suitable for describing other structural parameters of the canopy. This paper reviews the direct and indirect methods, the required instruments, their advantages, disadvantages and accuracy of the results. Analysis of the literature shows that most cross-validations between direct and indirect methods have pointed to a significant underestimation of LAI with the latter techniques, especially in forest stands. The two main causes for the discrepancy, clumping and contribution of stem and branches, are discussed and some recent theoretical or technical solutions are presented as potential improvements to reduce bias or discrepancies. The accuracy, sampling strategy and spatial validity of the LAI measurements have to be assessed for quality assurance of both the measurement and the modelling purposes of all the LAI-dependent ecophysiological and biophysical processes of canopies.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.
We tested the hypothesis that broad-leaved forest species with contrasting wood anatomy and hydraulic system (ring-porous versus diffuse-porous) also differ in distribution and seasonal dynamics of carbohydrate reserves in stem wood. Total nonstructural carbohydrate (TNC) reserves (starch and sugars) were measured enzymatically in the 10 youngest stem xylem rings of adult oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) trees during an annual cycle. Radial distribution of carbohydrates was investigated according to ring age. On all dates, oak trees had twofold higher TNC concentration than beech trees (41 versus 23 mg g(DM)(-1)), with starch accounting for the high TNC concentration in oak. Seasonal dynamics of TNC concentration were significantly (P < 0.05) more pronounced in oak (20-64 mg TNC g(DM)(-1)) than in beech (17-34 mg TNC g(DM)(-1)). A marked decrease in TNC concentration was observed in oak trees during bud burst and early wood growth, whereas seasonal fluctuations in TNC concentrations in beech trees were small. The radial distribution of TNC based on ring age differed between species: TNC was restricted to the sapwood rings in oak, whereas in beech, it was distributed throughout the wood from the outermost sapwood ring to the pith. Although the high TNC concentrations in the outermost rings accounted for most of the observed seasonal pattern, all of the 10 youngest xylem rings analyzed participated in the seasonal dynamics of TNC in beech trees. The innermost sapwood rings of oak trees had low TNC concentrations. Stem growth and accumulation of carbon reserves occurred concomitantly during the first part of the season, when there was no soil water deficit. When soil water content was depleted, stem growth ceased in both species, whereas TNC accumulation was negligibly affected and continued until leaf fall. The contrasting dynamics and distribution of carbohydrate reserves in oak and beech are discussed with reference to differences in phenology, early spring growth and hydraulic properties between ring-porous trees and diffuse-porous trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.