Ultraviolet A radiation (UVA, 320-400 nm) is mutagenic and induces genomic damage to skin cells. N-acetyl-cysteine (NAC), selenium and zinc have been shown to have antioxidant properties and to exhibit protective effects against UVA cytotoxicity. The present work attempts to delineate the effect of these compounds on genomic integrity of human skin fibroblasts exposed to UVA radiation using the single cell gel electrophoresis (SCGE) or Comet assay. The cells were incubated with NAC (5 mM), sodium selenite (0.6 microM) or zinc chloride (100 microM). Then cells were embedded in low melting point agarose, and immediately submitted to UVA fluences ranging from 1 to 6J/cm2. In the Comet assay, the tail moment increased by 45% (1 J/cm2) to 89% (6J/cm2) in non-supplemented cells (p)<0.01). DNA damage was significantly prevented by NAC, Se and Zn, with a similar efficiency from 1 to 4J/cm2 (p < 0.05). For the highest UVA dose (6J/cm2), Se and Zn were more effective than NAC (p < 0.01).
Human fibroblasts and keratinocytes possess nitric oxide synthases (NOS), which metabolize L-arginine (L-Arg) for producing nitric oxide (NO*). This report delineates the relations between NO* and UVA in the human keratinocyte cell line HaCaT. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 mM) supply led to an increase in UVA (25.3 J/cm(2)) cytotoxicity (% of viability 18 +/- 3%) whereas neither L-Arg itself nor UVA irradiation induced cell death at the doses used in this study. Cells were also treated either with L-thiocitrulline (L-Thio), an irreversible inhibitor of NOS, or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg-mediated deleterious effects in irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activities were also determined. UVA/L-Arg stress altered catalase (66% decrease) and glutathione peroxidase (83% decrease). DNA damage was evaluated using the 'comet assay' and quantified using the 'tail moment'. UVA alone was genotoxic (mean tail moment: 25.43 +/- 1.23, P<0.001 compared control cells). The addition of L-Arg potentiated DNA damage (mean tail moment: 41.05+/-3.9) whereas L-Thio prevented them (mean tail moment 9.86 +/- 0.98). We attempted to assess the effect of poly(ADP-ribose) polymerase (PARP) inhibition on cell death. Using the PARP inhibitor 3-aminobenzamide, we established that PARP determines both cell lysis and DNA damage induced by UVA and/or L-Arg. Our findings demonstrated that L-Arg was able to increase UVA-mediated deleterious effects in keratinocytes (both DNA damage and cytotoxicity) and that the ratio NO*/O2*- plays a key role in these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.