The relationships between phlorizin binding and Na+-glucose cotransport were addressed in rabbit renal brush-border membrane vesicles. At pH 6.0 and 8.6, high affinity phlorizin binding followed single exponential kinetics. With regard to phlorizin concentrations, the binding data conformed to simple Scatchard kinetics with lower apparent affinities of onset binding (Kdi = 12-30 microM) compared to steady-state binding (Kde = 2-5 microM), and the first-order rate constants demonstrated a Michaelis-Menten type of dependence with Km values identical to Kdi. Phlorizin dissociation from its receptor sites also followed single exponential kinetics with time constants insensitive to saturating concentrations of unlabeled phlorizin or D-glucose, but directly proportional to Na+ concentrations. These results prove compatible with homogeneous binding to SGLT1 whereby fast Na+ and phlorizin addition on the protein is followed by a slow conformation change preceding further Na+ attachment, thus occluding part of the phlorizin-bound receptor complexes. This two-step mechanism of inhibitor binding invalidates the recruitment concept as a possible explanation of the fast-acting slow-binding paradigm of phlorizin, which can otherwise be resolved as follows: the rapid formation of an initial collision complex explains the fast-acting behavior of phlorizin with regard to its inhibition of glucose transport; however, because this complex also rapidly dissociates in a rapid filtration assay, the slow kinetics of phlorizin binding are only apparent and reflect its slow isomerization into more stable forms.
The kinetics of Na+/d-glucose cotransport (SGLT) were reevaluated in rabbit renal brush border membrane vesicles isolated from the whole kidney cortex using a fast-sampling, rapid-filtration apparatus (FSRFA, US patent #5,330,717) for uptake measurements. Our results confirm SGLT heterogeneity in this preparation, and both high (HAG) and low (LAG) affinity glucose transport pathways can be separated over the 15-30 degrees C range of temperatures. It is further shown that: (i) Na+ is an essential activator of both HAG and LAG; (ii) similar energies of activation can be estimated from the linear Arrhenius plots constructed from the Vmax data of HAG and LAG, thus suggesting that the lipid composition and/or the physical state of the membrane do not affect much the functioning of SGLT; (iii) similar Vmax values are observed for glucose and galactose transport through HAG and LAG, thus demonstrating that the two substrates share the same carrier agencies; and (iv) phlorizin inhibits both HAG and LAG competitively and with equal potency (Ki = 15 microM). Individually, these data do not allow us to resolve conclusively whether the kinetic heterogeneity of SGLT results from the expression in the proximal tubule of either two independent transporters (rSGLT1 and rSGLT2) or from a unique transporter (rSGLT1) showing allosteric kinetics. Altogether and compared to the kinetic characteristics of the cloned SGLT1 and SGLT2 systems, they do point to a number of inconsistencies that lead us to conclude the latter possibility, although it is recognized that the two alternatives are not mutually exclusive. It is further suggested, from the differences in the Km values of HAG transport in the kidney as compared to the small intestine and SGLT1 cRNA-injected oocytes, that renal SGLT1 activity is somehow modulated, maybe through heteroassociation with (a) regulatory subunit(s) that might also contribute quite significantly to sugar transport heterogeneity in the kidney proximal tubule.
Although phlorizin inhibition of Na+-glucose cotransport occurs within a few seconds, 3H-phlorizin binding to the sodium-coupled glucose transport protein(s) requires several minutes to reach equilibrium (the fast-acting slow-binding paradigm). Using kinetic models of arbitrary dimension that can be reduced to a two-state diagram according to Cha's formalism, we show that three basic mechanisms of inhibitor binding can be identified whereby the inhibitor binding step either (A) represents, (B) precedes, or (C) follows the rate-limiting step in a binding reaction. We demonstrate that each of mechanisms A-C is associated with a set of unique kinetic properties, and that the time scale over which one may expect to observe mechanism C is conditioned by the turnover number of the catalytic cycle. In contrast, mechanisms A and B may be relevant to either fast-acting or slow-binding inhibitors. However, slow-binding inhibition according to mechanism A may not be compatible with a fast-acting behavior on the steady-state time scale of a few seconds. We conclude that the recruitment hypothesis (mechanism C) cannot account for slow phlorizin binding to the sodium-coupled glucose transport protein(s), and that mechanism B is the only alternative that may explain the fast-acting slow-binding paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.