Background: Artificial intelligence (AI)-enabled analysis of 12-lead electrocardiograms (ECGs) may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF. Methods: We trained a convolutional neural network ("ECG-AI") to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH). We then fit three Cox proportional hazards models, each composed of: a) ECG-AI 5-year AF probability, b) the Cohorts for Heart and Aging in Genomic Epidemiology AF (CHARGE-AF) clinical risk score, and c) terms for both ECG-AI and CHARGE-AF ("CH-AI"). We assessed model performance by calculating discrimination (area under the receiver operating characteristic curve, AUROC) and calibration in an internal test set and two external test sets (Brigham and Women's Hospital and UK Biobank). Models were recalibrated to estimate 2-year AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to identify ECG features most influential on ECG-AI risk predictions and assessed correlation between ECG-AI and CHARGE-AF linear predictors. Results: The training set comprised 45,770 individuals (age 55±17 years, 53% women, 2,171 AF events), and the test sets comprised 83,162 individuals (age 59±13 years, 56% women, 2,424 AF events). AUROC was comparable using CHARGE-AF (MGH 0.802, 95% CI 0.767-0.836; BWH 0.752, 95% CI 0.741-0.763; UK Biobank 0.732, 95% CI 0.704-0.759) and ECG-AI (MGH 0.823, 95% CI 0.790-0.856; BWH 0.747, 95% CI 0.736-0.759; UK Biobank 0.705, 95% CI 0.673-0.737). AUROC was highest using CH-AI: MGH 0.838, 95% CI 0.807-0.869; BWH 0.777, 95% CI 0.766-0.788; UK Biobank 0.746, 95% CI 0.716-0.776). Calibration error was low using ECG-AI (MGH 0.0212; BWH 0.0129; UK Biobank 0.0035) and CH-AI (MGH 0.012; BWH 0.0108; UK Biobank 0.0001). In saliency analyses, the ECG P-wave had the greatest influence on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson r MGH 0.61, BWH 0.66, UK Biobank 0.41). Conclusions: AI-based analysis of 12-lead ECGs has similar predictive utility to a clinical risk factor model for incident AF and both approaches are complementary. ECG-AI may enable efficient quantification of future AF risk.
For any given level of overall adiposity, individuals vary considerably in fat distribution. The inherited basis of fat distribution in the general population is not fully understood. Here, we study up to 38,965 UK Biobank participants with MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes. Because these fat depot volumes are highly correlated with BMI, we additionally study six local adiposity traits: VAT adjusted for BMI and height (VATadj), ASATadj, GFATadj, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. We identify 250 independent common variants (39 newly-identified) associated with at least one trait, with many associations more pronounced in female participants. Rare variant association studies extend prior evidence for PDE3B as an important modulator of fat distribution. Local adiposity traits (1) highlight depot-specific genetic architecture and (2) enable construction of depot-specific polygenic scores that have divergent associations with type 2 diabetes and coronary artery disease. These results – using MRI-derived, BMI-independent measures of local adiposity – confirm fat distribution as a highly heritable trait with important implications for cardiometabolic health outcomes.
Background: Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. Methods: Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. Results: LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P<0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. Conclusions: Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.