Tar DNA Binding Protein-43 (TDP-43) is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein - RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.
In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.
Novel classes of anticancer drugs, including proteasome inhibitors and Hsp90 inhibitors, potently induce heat shock proteins (Hsps). Because Hsps show antiapoptotic activities, we suggested that suppression of such induction may sensitize cancer cells to these drugs. Here, we knocked out the major heat shock transcription factor HSF-1 in several cancer cell lines using small interfering RNA and showed that such cells, which can no longer induce Hsps in response to proteasome and Hsp90 inhibitors, become more sensitive to these drugs. Furthermore, we developed a high-throughput screen for small molecules that inhibit induction of Hsps. The first step was a cell-based screen for inhibitors of Hsps-mediated luciferase refolding followed by a counterscreen for toxicity. The second step was a direct testing for inhibition of Hsp induction by immunoblotting with anti-Hsp72 antibody. After screening of 20,000 compounds from several diversity libraries, we focused on a compound we called NZ28, which potently inhibited induction of Hsps by heat shock, proteasome, and Hsp90 inhibitors in a variety of cell lines, and showed no significant toxicity. After testing of a set of analogues of NZ28, we identified a structural element that was critical for the activity. We also identified another inhibitor of the Hsp induction that was practically nontoxic. This compound, which we called emunin, strongly sensitized myeloma cells to proteasome and Hsp90 inhibitors and prostate carcinoma cells to proteasome inhibitors. This work indicates that targeting the heat shock response may facilitate use of proteasome and Hsp90 inhibitors for cancer treatment.
Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyse the autophagic degradation of different types of aggregates of synphilin-1, a protein often found in pathogenic protein inclusions. We show that small synphilin-1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in synphilin-1, necessary for its own basal and inducible aggrephagy and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favours the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se, but on their dynamic properties in the aggregate.
Sortilin is involved in the anterograde traffic of lysosomal enzymes and substrates. It also transports Glut4 in the opposite, retrograde, direction in a retromer-dependent fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.