Automatic generation of video captions is a fundamental challenge in computer vision. Recent techniques typically employ a combination of Convolutional Neural Networks (CNNs) and Recursive Neural Networks (RNNs) for video captioning. These methods mainly focus on tailoring sequence learning through RNNs for better caption generation, whereas off-the-shelf visual features are borrowed from CNNs. We argue that careful designing of visual features for this task is equally important, and present a visual feature encoding technique to generate semantically rich captions using Gated Recurrent Units (GRUs). Our method embeds rich temporal dynamics in visual features by hierarchically applying Short Fourier Transform to CNN features of the whole video. It additionally derives high level semantics from an object detector to enrich the representation with spatial dynamics of the detected objects. The final representation is projected to a compact space and fed to a language model. By learning a relatively simple language model comprising two GRU layers, we establish new stateof-the-art on MSVD and MSR-VTT datasets for METEOR and ROUGE L metrics.
Video description is the automatic generation of natural language sentences that describe the contents of a given video. It has applications in human-robot interaction, helping the visually impaired and video subtitling. The past few years have seen a surge of research in this area due to the unprecedented success of deep learning in computer vision and natural language processing. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, calling the need for a comprehensive survey to focus research efforts in this flourishing new direction. This article fills the gap by surveying the state-of-the-art approaches with a focus on deep learning models; comparing benchmark datasets in terms of their domains, number of classes, and repository size; and identifying the pros and cons of various evaluation metrics, such as SPICE, CIDEr, ROUGE, BLEU, METEOR, and WMD. Classical video description approaches combined subject, object, and verb detection with template-based language models to generate sentences. However, the release of large datasets revealed that these methods cannot cope with the diversity in unconstrained open domain videos. Classical approaches were followed by a very short era of statistical methods that were soon replaced with deep learning, the current state-of-the-art in video description. Our survey shows that despite the fast-paced developments, video description research is still in its infancy due to the following reasons: Analysis of video description models is challenging, because it is difficult to ascertain the contributions towards accuracy or errors of the visual features and the adopted language model in the final description. Existing datasets neither contain adequate visual diversity nor complexity of linguistic structures. Finally, current evaluation metrics fall short of measuring the agreement between machine-generated descriptions with that of humans. We conclude our survey by listing promising future research directions.
Visual storytelling (VST) pertains to the task of generating story-based sentences from an ordered sequence of images. Contemporary techniques suffer from several limitations such as inadequate encapsulation of visual variance and context capturing among the input sequence. Consequently, generated story from such techniques often lacks coherence, context and semantic information. In this research, we devise a 'Semantic Attribute Enriched Storytelling' (SAES) framework to mitigate these issues. To that end, we first extract the visual features of input image sequence and the noun entities present in the visual input by employing an off-the-shelf object detector. The two features are concatenated to encapsulate the visual variance of the input sequence. The features are then passed through a Bidirectional-LSTM sequence encoder to capture the past and future context of the input image sequence followed by attention mechanism to enhance the discriminality of the input to language model i.e., mogrifier-LSTM. Additionally, we incorporate semantic attributes e.g., nouns to complement the semantic context in the generated story. Detailed experimental and human evaluations are performed to establish competitive performance of proposed technique. We achieve up 1.4% improvement on BLEU metric over the recent state-of-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.