The accuracy of quantitative absorption spectroscopy depends on correctly distinguishing molecular absorption signatures in a measured transmission spectrum from the varying intensity or 'baseline' of the light source. Baseline correction becomes particularly difficult when the measurement involves complex, broadly absorbing molecules or non-ideal transmission effects such as etalons. We demonstrate a technique that eliminates the need to account for the laser intensity in absorption spectroscopy by converting the measured transmission spectrum of a gas sample to a modified form of the time-domain molecular free induction decay (m-FID) using a cepstral analysis technique developed for audio signal processing. Much of the m-FID signal is temporally separated from and independent of the source intensity, and this portion can be fit directly with a model to determine sample gas properties without correcting for the light source intensity. We validate the new approach in several complex absorption spectroscopy scenarios and discuss its limitations. The technique is applicable to spectra obtained with any absorption spectrometer and provides a fast and accurate approach for analyzing complex spectra.
AbstractThis document provides supplementary material for "Baseline-free Quantitative Absorption Spectroscopy Based on Cepstral Analysis." Here, we include further details of the spectral model used to fit the broadband spectrum of ethane and methane. We also compare the two sources of absorption cross section data used to generate and fit a simulated spectrum of four broadly absorbing compounds in the mid-infrared. We give a full table of fit results for the simulated MIR spectrum to accompany an abbreviated version in the full text.
We demonstrate fiber mode-locked dual frequency comb spectroscopy for broadband, high resolution measurements in a rapid compression machine (RCM). We apply an apodization technique to improve the short-term signal-to-noise-ratio (SNR), which enables broadband spectroscopy at combustionrelevant timescales. We measure the absorption on 24345 individual wavelength elements (comb teeth) between 5967 and 6133 cm -1 at 704-µs time resolution during a 12-ms compression of a CH4-N2 mixture. We discuss the effect of the apodization technique on the absorption spectra, and apply an identical effect to the spectral model during fitting to recover the mixture temperature. The fitted temperature is compared against an adiabatic model, and found to be in good agreement with expected trends. This work demonstrates the potential of DCS to be used as an in situ diagnostic tool for broadband, high resolution, measurements in engine-like environments.
We characterize an Er:fiber laser frequency comb that is passively carrier envelope phase-stabilized via difference frequency generation at a wavelength of 1550 nm. A generic method to measure the comb linewidth at different wavelengths is demonstrated. By transferring the properties of a comb line to a cw external cavity diode laser, the phase noise is subsequently measured by tracking the delayed self-heterodyne beat note. This relatively simple characterization method is suitable for a broad range of optical frequencies. Here, it is used to characterize our difference frequency generation (DFG) comb over nearly an optical octave. With repetition-rate stabilization, a radiofrequency reference oscillator limited linewidth is achieved. A lock to an optical reference shows out-of-loop linewidths of the comb at the hertz level. The phase noise measurements are in excellent agreement with the elastic tape model with a fix point at zero frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.