In the present cross sectional study, we aimed to ascertain the relative associations of GST genotypes with GST activity variations and also with the risk to DMT2 predisposition among men and women separately. Clinical samples obtained from 244 DMT2 cases (120 Males and 124 Females) and 228 controls (117 Males and 111 Females) belonging to Asian Indian ethnicity were used to test for glycemic index, lipid profile, GST activity and GST genotypes. The frequencies of single and combinations of GST genotypes were statistically examined for their association with DMT2 risk among both study groups. The GST activity is significantly lowered in DMT2 group compared to controls (p = < 0.001). This reduction is found to be subjective to single and combinations of GST genotypes among diabetic patients. The frequency distribution for single, double and triple combinations of genotypes of GSTT1, GSTM1 and GSTP1 showed the varying degrees of association with DMT2 risk from 0.5 to 5.6-fold among male and female patients (for all associations, p value was <0.05). Interestingly, GST activity was lowered in both male and female patients with single or combinational genotypes of GSTM1 (Null), GSTT1 (Null), and P1 (V/V) (for all associations, p value was = <0.0001). The reduced anti-oxidant capacity among diabetic patients with certain GST genotypes may have some important implications for disease diagnosis and therapy.
Insulin-degrading enzyme (IDE) is a key protease involved in degrading insulin and amyloid peptides in human body. Several non-synonymous genetic mutations of IDE gene have been recently associated with susceptibility to both diabetes and Alzheimer's diseases. However, the consequence of these mutations on the structure of IDE protein and its substrate binding characteristics is not well elucidated. The computational investigation of genetic mutation consequences on structural level of protein is recently found to be an effective alternate to traditional in vivo and in vitro approaches. Hence, by using a combination of empirical rule and support vector machine based in silico algorithms, this study was able to identify that the pathogenic nonsynonymous genetic mutations corresponding to p.I54F, p.P122T, p.T533R, p.P581A and p.Y609A have more potential role in structural and functional deviations of IDE activity. Moreover, molecular modeling and secondary structure analysis have also confirmed their impact on the stability and secondary properties of IDE protein. The molecular docking analysis of IDE with combinational substrates has revealed that peptide inhibitors compared to small non-peptide inhibitor molecules possess good inhibitory activity towards mutant IDE. This finding may pave a way to design novel potential small peptide inhibitors for mutant IDE. Additionally by un-translated region (UTR) scanning analysis, two regulatory pathogenic genetic mutations i.e., rs5786997 (3' UTR) and rs4646954 (5' UTR), which can influence the translation pattern of IDE gene through sequence alteration of upstream-Open Reading Frame and Internal Ribosome Entry Site elements were identified. Our findings are expected to help in narrowing down the number of IDE genetic variants to be screened for disease association studies and also to select better competitive inhibitors for IDE related diseases.
The CYP2C8 and CYP2C9 are two major isoforms of the cytochrome P450 enzyme family, which is involved in drug response, detoxification, and disease development. This study describes the differential distribution of amino acid substitution variants of CYP2C8 (*2-I269F & *3-R139K) and CYP2C9 (*2-C144R & *3-L359A) genes in 234 type 2 diabetes mellitus (T2DM) patients and 218 healthy controls from Andhra Pradesh, South India. Single locus genotype analysis has revealed that homozygous recessive genotypes of 2C8*2-TT (P ≤ .03), 2C9*2-TT (P ≤ .02), and heterozygous 2C9*3-AC (P ≤ .006) are seen to be increasingly present in the case group, indicating a significant level of their association with diabetes in Andhra population. The statistical significance of these recessive genotypes has persisted even under their corresponding allelic forms (P ≤ .01). Genotype association results were further examined by computational protein structure and stability analysis to assess the deleteriousness of the amino acid changes. The mutant CYP 2C8 and 2C9 (both *2 and *3) proteins showed structural drifts at both amino acid residue (range 0.43Å-0.77Å), and polypeptide chain levels (range 0.68Å-1.81Å) compared to their wild-type counterparts. Furthermore, the free energy value differences (range -0.915 to -1.38 Kcal/mol) between mutant and native protein structures suggests the deleterious and destabilizing potential of amino acid substitution polymorphisms of CYP genes. The present study confirms the variable distribution of CYP2C8 (*2 and *3) and CYP2C9 (*2 and *3) allelic polymorphisms among South Indian diabetic populations and further warrants the serious attention of CYP gene family, as a putative locus for disease risk assessment and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.