In the search for attractive hydrocarbon resources, geological targets are often encountered that are designated as high-pressure, high-temperature (HPHT). To ensure an HPHT well meets or exceeds design life, a very thorough design review is needed for all aspects of the well architecture to ensure integrity is maintained throughout. Often overlooked, improper handling and installation through lack of knowledge, equipment selection, or technology have led to many well integrity issues in HPHT wells. The presence of certain corrosive downhole species, combined with the high temperatures and pressures of these wells can accelerate corrosion mechanisms on well bore tubulars at an early stage of the well's life. To address this challenge, corrosion resistant alloy (CRA) tubulars, along with temperature and pressure monitoring equipment, are often designed into the well architecture to ensure well integrity is preserved. These elements must be handled and installed carefully as impressions, marks, and cuts from make-up and handling operations can further accelerate corrosion failures on the tubular, such as stress corrosion cracking, while compromising the integrity of the downhole measuring equipment. To ensure these wells have the best chance of meeting target design life, special consideration should be given to the control line and tubing handling equipment. Specialized equipment, such as control line manipulation systems, offer extra protection to lines as they are manipulated for clamp installation, as well as increased safety and efficiency within the operations. Compensation systems prevent damage to threaded connections during stabbing and make-up while intelligent connection analyzed make-up systems use artificial intelligence and machine learning to provide real-time accurate, consistent, and reliable connection integrity assessments. And lastly, specialized reduced penetration or non-marking technologies can be utilized for make-up and handling of CRA tubulars to minimize or eliminate iron transfer and impressions imparted into the tubular body. By eliminating these, the potential for corrosion cracking due to stress concentrations and other risks of corrosion are also eliminated. One industry sponsored study examined the condition of 406 injection and production wells on the Norwegian shelf. Of these wells, 18% of the wells suffered from well integrity incidents, while nearly 40% of these incidents were due to the tubular string, emphasizing the need for specialized attention and equipment selections for HPHT wells.
The process of running completions typically involves an increased complexity of systems and setups. The running of control lines and umbilicals have historically used hanging sheaves to route the lines from the spoolers to well center and require increased number of personnel in the red zone during operations. These complexities introduce many risks and potential incidents that operators aim to eliminate. Typical procedures for running completions require man-riding operations to hang sheaves in the derrick. Once the control lines or umbilicals are routed through these sheaves, they become overhead loaded objects and subsequently increase the risk of incident to personnel working on the rig floor. Other operational steps include the manual manipulation of lines to clamp the lines/umbilical to the tubular. This traditional clamping procedure not only requires an increased number of personnel in the red zone, but it also introduces inefficiencies to the operation. Through planning and the use of specialized remote manipulation technologies, operators can remove the need for overhead control line/umbilical sheaves and the manual handling of lines in the red zone. Although risks do not always result in incidents, organizations still strive to eliminate risks throughout their operations. By using remote manipulation technologies that eliminate control line/umbilical hanging sheaves, the operators benefit from the following: – Eliminating working at height for sheave installation – Eliminating overhead loaded components and increasing safety of personnel working on the rig floor – Decreasing the number of personnel required in the red zone and reducing manual handling – Increasing the efficiency of the operation By using systems like these, operators have been able to increase average running speeds, improving from 8.8 to 5.9 minutes per joint, as well as eliminate potentially fatal incidents that have occurred during the completions running process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.