A macrophage migration inhibitory factor (MIF)-like molecule, Tci-MIF-1, was isolated from Teladorsagia circumcincta and subjected to detailed characterization. A cDNA representing Tci-mif-1 was isolated following its identification in third-stage larvae (L3)-enriched cDNA population. Sequencing of the cDNA indicated a 348-bp open reading frame (ORF) with the closest orthologue being a MIF derived from the human hookworm Ancylostoma ceylanicum. Messenger RNA (mRNA) representing the Tci-MIF-1 transcript was detected in eggs, L3 and adult stages of T. circumcincta. The transcript was also present, but to a lesser extent in fourth-stage larvae (L4). Detection of Tci-MIF-1 protein in T. circumcincta developmental stages reflected the transcript levels identified by reverse transcriptase-PCR. Using immunohistochemistry, the Tci-MIF-1 protein was shown to have a diffuse distribution in L3 tissue, and in L4 and adult stages, the protein was localized to the nematode gut. A recombinant version of Tci-MIF-1 was produced, and enzymic assays indicated that this recombinant protein and a somatic extract of L3 possessed dopachrome tautomerase activity as has been observed previously in other MIF-like molecules. Neither native, purified Tci-MIF nor recombinant Tci-MIF-1 dramatically influenced the in vitro migration of sheep monocytes.
Unravelling structures of molecules contained in complex, chromatographically inseparable mixtures is a challenging task. Due to the number of overlapping resonances in NMR spectra of these mixtures, unambiguous chemical shift correlations attributable to individual molecules cannot be achieved and thus their structure determination is elusive by this technique. Placing a tag carrying an NMR active nucleus onto a subset of molecules enables (i) to eliminate signals from the non-tagged molecules, and (ii) to obtain a set of correlated chemical shifts and coupling constants belonging to a single molecular type. This approach provides an opportunity for structure determination without the need for compound separation. Focusing on the most abundant functional groups of natural organic matter molecules, the carboxyl and hydroxyl groups were converted into esters and ethers, respectively by introducing (13)CH3O groups. A set of (13)C-filtered nD NMR experiments was designed yielding structures/structural motives of tagged molecules. The relative sensitivity of these experiments was compared and a step-by-step guide how to use these experiments to analyse the structures of methylated phenolics is provided. The methods are illustrated using an operational fraction of soil organic matter, fulvic acid isolated from a Scottish peat bog. Analysis of 33 structures identified in this sample revealed a correlation between the position of the methoxy cross-peaks in the (1)H, (13)C HSQC spectra and the compound type. This information enables profiling of phenolic compounds in natural organic matter without the need to acquire a full set of experiments described here or access to high field cryoprobe NMR spectrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.