We have investigated oral development in a non‐genically derived left‐handed (LH) form of Tetrahymena thermophila, in which the large‐scale asymmetry of arrangement of cortical structures is reversed whereas the local asymmetry of ciliary architecture remains normal. Approximately 1/2 of the oral apparatuses (OAs) of LH cells develop in the form of superficial mirror‐images of OAs of RH cells. In most of these OAs, membranelles are assembled from the cells’anterior to posterior. Nonetheless, the posterior ends of these membranelles undergo the basal body displacements that lead to a “sculptured” appearance, so that the membranelles of LH OAs become organized as rotational permutations of membranelles of normal RH OAs. Many of these membranelles re‐orient to a normal orientation near the end of oral development. Membranelles and undulating membranes (UMs) may develop independently of each other, and formation of postciliary microtubules of UMs is separate from that of ribbed wall microtubules. In some cases, the entire OA develops and remains as a 180° rotational permutation of the normal, resembling the inverted OAs of mirror‐image doublets and LH cells of Glaucoma scintillans described by Suhama [36, 37]. We present a model (Fig. 37) for these complex developmental outcomes. These developmental patterns resemble those described previously and less completely for “secondary” OAs of cells with mirror‐image global patterns, including janus cells. The present study demonstrates that such alterations in oral development are not a direct outcome of genotypic changes.
The initial changes of cell-surface organization that occurred as the recessive janA1 (janus) mutation of Tetrahymena thermophila first became expressed were elucidated in a special mating scheme in which old macronuclei homozygous for janA+ were synchronously replaced by new macronuclei homozygous for janA1. During this period of onset of expression, the number, regularity, and asymmetry of the ciliary rows remained unchanged. New normal (primary) oral apparatuses (OAs) continued to be formed posterior to old OAs, as in normal cells. At about four fissions after conjugation, abnormal (secondary) OAs with a partial reversal of asymmetry began to appear nearly opposite to the primary OAs, close to but not at the eventual circumferential position of janA1 secondary OAs. The array of contractile vacuole pores (CVPs), normally located adjacent to two ciliary rows centered near 22% of the cell circumference to the right of the primary oral meridian, underwent a two-step transformation: first, the number of adjacent ciliary rows bearing CVPs increased to 3, 4, and sometimes 5, then "skipped" rows appeared within this broadened CVP-arc to split the single set of CVPs into two separated subsets. The CVP transformations occurred gradually and progressively. They began prior to the expression of secondary OAs but accelerated as secondary OAs appeared. As the CVP arc became broader, its midpoint shifted somewhat to the right, away from the primary oral meridian, but ended up close to halfway between the primary and secondary oral meridians. The data provide a better fit to an intercalation model than to an alternative double-gradient model, suggesting that the janA1 mutation alters the large-scale organization of positional values by preventing the expression of a subset of these values and thus provoking reverse-intercalation of the remainder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.