Our results demonstrate that MBCs show a basal-like phenotype, regardless of the type of metaplastic elements. Moreover, as these neoplasms frequently overexpress EGFR (57%), patients with MBC may benefit from treatment with anti-EGFR drugs.
There is compelling evidence from transgenic mouse studies and analysis of mutations in human carcinomas indicating that the TGF-β signal transduction pathway is tumor suppressive. We have shown that overexpression of TGF-β1 in mammary epithelial cells suppresses the development of carcinomas and that expression of a dominant negative type II TGF-β receptor (DNIIR) in mammary epithelial cells under control of the MMTV promoter/enhancer increases the incidence of mammary carcinomas. Studies of human tumors have demonstrated inactivating mutations in human tumors of genes encoding proteins involved in TGF-β signal transduction, including DPC4/Smad4, Smad2, and the type II TGF-β receptor (TβRII). There is also evidence that TGF-β can enhance the progression of tumors. This hypothesis is being tested in genetically modified mice. To attain complete loss of TβRII, we have generated mice with loxP sites flanking exon 2 of Tgfbr2 and crossed them with mice expressing Cre recombinase under control of the MMTV promoter/enhancer to obtain Tgfbr2 mgKO mice. These mice show lobuloalveolar hyperplasia. Mice are being followed for mammary tumor development. Tgfbr2 mgKO mice that also express polyoma virus middle T antigen under control of the MMTV promoter (MMTV-PyVmT) develop mammary tumors with a significantly shorter latency than MMTV-PyVmT mice and show a marked increase in pulmonary metastases. Our data do not support the hypothesis that TGF-β signaling in mammary carcinoma cells is important for invasion and metastasis, at least in this model system. The importance of stromal-epithelial interactions in mammary gland development and tumorigenesis is well established. These interactions probably involve autocrine and paracrine action of multiple growth factors, including members of the TGF-β family, which are expressed in both stroma and epithelium. Again, to accomplish complete knockout of the type II TGF-β receptor gene in mammary stromal cells, FSP1-Cre and Tgfbr2 flox/flox mice were crossed to attain Tgfbr2 fspKO mice. The loss of TGF-β responsiveness in fibroblasts resulted in intraepithelial neoplasia in prostate and invasive squamous cell carcinoma of the forestomach with high penetrance by 6 weeks of age. Both epithelial lesions were associated with an increased abundance of stromal cells. Activation of paracrine hepatocyte growth factor (HGF) signaling was identified as one possible mechanism for stimulation of epithelial proliferation. TGF-β signaling in fibroblasts thus modulates the growth and oncogenic potential of adjacent epithelia in selected tissues. More recently, we have examined the effects of Tgfbr2 fspKO fibroblasts on normal and transformed mammary epithelium. We analyzed the role of TGF-β signaling by stromal cells in mammary tumor progression. To avoid the possibility of endogenous wild-type fibroblasts masking potential effects of Tgfbr2 fspKO cells on tumor progression, we implanted PyVmT mammary carcinoma cells with Tgfbr2 fspKO or wildtype fibroblasts in the subrenal capsule of nude mice. Mamm...
Introduction Metaplastic breast carcinomas constitute a heterogeneous group of neoplasms, accounting for less than 1% of all invasive mammary carcinomas. Approximately 70-80% of metaplastic breast carcinomas overexpress the epidermal growth factor receptor (EGFR). Human epidermal growth factor receptor (HER)2 and EGFR have attracted much attention in the medical literature over the past few years owing to the fact that humanized monoclonal antibodies against HER2 and therapies directed against the extracellular ligand-binding domain or the intracellular tyrosine kinase domain of EGFR have proven successful in treating certain types of human cancer. We investigated whether HER2 and EGFR overexpression was present and evaluated gene amplification in a series of metaplastic breast carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.