One of the primary goals of protein design is to engineer proteins with improved stability. Protein stability is a key issue for chemical, biotechnology and pharmaceutical industries. The development of robust proteins/enzymes with the ability to withstand the potentially harsh conditions of industrial operations is of high importance. A number of strategies are currently being employed to achieve this goal. Two particular approaches, (i) directed evolution and (ii) computational protein design, are quite powerful yet have only recently been combined or applied and analyzed in parallel. In directed evolution, libraries of variants are searched experimentally for clones possessing the desired properties. With computational methods, protein design algorithms are utilized to perform in silico screening for stable protein sequences. Here, we used gene libraries of an unstable variant of streptococcal protein G (Gbeta1) and an in vivo screening method to identify stabilized variants. Many variants with notably increased thermal stabilities were isolated and characterized. Concomitantly, computational techniques and protein design algorithms were used to perform in silico screening of the same destabilized variant of Gbeta1. The combined use, and critical analysis, of these methods promises to advance the field of protein design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.