This paper presents the multi-objective optimization of the hard milling process of AISI H13 steel under minimum quality lubricant with graphite nanoparticle. The cutting speed, feed per tooth, depth of cut, and hardness of workpiece were taken as the process parameters, while surface roughness, cutting energy, cutting temperature, and material removal rate were considered as technological responses. Response surface or Kriging approximate models were applied to generate the mathematical regression models showing the relationship between machining inputs and outputs obtained by physical experiments. Then, multi-objective particle swarm optimization algorithm in conjunction with the Pareto approach and engineering data mining was adopted to figure out the feasible solutions. The research results show that cutting energy can be reduced up to around 14% compared to the worst case. Based on the Pareto plot, the appropriate selection of machining parameters can help the machine tool operator to increase machining productivity and energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.