Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in
51Outbreaks of emerging coronaviruses in the past two decades and the current pandemic 52 of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this 53 viral family as a zoonotic public health threat. To gain a better understanding of coronavirus 54 presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet 55Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus 56 sequences. In comparison to previous studies, we observed high proportions of positive samples 57 among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in 58 guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the 59 odds of coronavirus RNA detection significantly increased along the supply chain from field rats 60 sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in 61 large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 62 84/151). Coronaviruses were detected in the majority of wildlife farms (60.7%, 17/28) and in the 63 Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are farmed. We identified 64 six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including 65 the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of 66 animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and 67 avian coronaviruses were detected in rodent feces in the trade. The mixing of multiple 68 coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, 69 suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic 70 spillover to people. 71 72
SUMMARYPorcine reproductive and respiratory syndrome (PRRS) outbreaks in pigs are associated with increased susceptibility of pigs to secondary bacterial infections, including Streptococcus suis – an important zoonotic pathogen causing bacterial meningitis in humans. This case-control study examined the association between human S. suis infection and PRRS outbreaks in pigs in northern Vietnam. We included 90 S. suis case-patients and 183 non-S. suis sepsis controls from a referral hospital in Hanoi in 2010, a period of major PRRS epizootics in Vietnam. PRRS exposure was determined using data from the National Centre of Veterinary Diagnosis. By univariate analysis, significantly more S. suis patients were reported residing in or adjacent to a PRRS district compared to controls [odds ratio (OR) 2·82, 95% confidence interval (CI) 1·35–5·89 and OR 3·15, 95% CI 1·62–6·15, respectively]. Only residency in adjacent districts remained significantly associated with risk of S. suis infection after adjusting for sex, occupation, and eating practices. SaTScan analysis showed a possible cluster of S. suis infection in humans around PRRS confirmed locations during the March–August period. The findings indicate an epidemiological association between PRRS in pigs and S. suis infections in humans. Effective strategies to strengthen control of PRRS in pigs may help reduce transmission of S. suis infection to humans.
Porcine epidemic diarrhea virus (PEDV) has emerged in Vietnam since 2009. Herein, full-length genome sequences are reported for three PEDV isolates from pigs displaying severe diarrhea from farms located in northern and southern provinces of Vietnam. The results provide more understanding of the molecular characteristics of PEDV in Vietnam.
The mosquito Aedes aegypti is a transmission vector for dangerous epidemic diseases in humans. Insecticides have been used as the most general vector control method in the world. However, Ae. aegypti have developed many resistant mechanisms such as reduced neuronal sensitivity to insecticides (target-site resistance), enhanced insecticide metabolism (metabolic resistance), altered transport, sequestration, and other mechanisms. It has become a major problem for vector control programs. Transcriptome sequencing and bioinformatic analysis were used to compare transcription levels between a susceptible strain (Bora7) and a resistant strain (KhanhHoa7) collected from the field. A total of 161 million Illumina reads, including 66,076,678 reads from the Bora7 strain and 69,606,654 reads from the KhanhHoa7 strain, were generated and assembled into 11,174 genes. A comparison of the KhanhHoa7 transcriptome to that of Bora7 showed 672 upregulated genes and 488 downregulated genes. We identified the highly upregulated genes: cytochrome P450 4C1, 4C3, 4C21, 4D1, 4D1 isoform X2, 4D2, 4D2 isoform X2, 4G15, 6A2, 6A8, 6D3, and 9E2; Glutathione S transferase (GST1), UGT1-3, 1-7, 2B15, and 2B37; binding cassette transporter (ABC) transporter F family member 4 and ABC transporter G family member 20. Interestingly, there was a significant increase in the expression of the genes such as CYP9E2 (8.3-fold), CYP6A8 (5.9-fold), CYP6D3 (5.4-fold), CYP4C21 (5.4-fold), CYP4G15 (5.2-fold), GST1 (3.5-fold), and ABC transporter 4 (2.1-fold). Our results suggested a potential relationship between the expression of the genes in metabolic processes and insecticide resistance in the studied strain. These results may contribute to the understanding of the mechanisms of insecticide resistance in Ae. aegypti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.