Monitoring populations of hosts as well as insect vectors is an important part of agricultural and public health risk assessment. In applications where pathogen prevalence is likely low, it is common to test pools of subjects for the presence of infection, rather than to test subjects individually. This technique is known as pooled (group) testing. In this paper, we revisit the problem of estimating the population prevalence p from pooled testing, but we consider applications where inverse binomial sampling is used. Our work is unlike previous research in pooled testing, which has largely assumed a binomial model. Inverse sampling is natural to implement when there is a need to report estimates early on in the data collection process and has been used in individual testing applications when disease incidence is low. We consider point and interval estimation procedures for p in this new pooled testing setting, and we use example data sets from the literature to describe and to illustrate our methods.
Group testing, also known as pooled testing, and inverse sampling are both widely used methods of data collection when the goal is to estimate a small proportion. Taking a Bayesian approach, we consider the new problem of estimating disease prevalence from group testing when inverse (negative binomial) sampling is used. Using different distributions to incorporate prior knowledge of disease incidence and different loss functions, we derive closed form expressions for posterior distributions and resulting point and credible interval estimators. We then evaluate our new estimators, on Bayesian and classical grounds, and apply our methods to a West Nile Virus data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.