SUMMARYThe recently established virus family Flaviviridae contains at least 68 recognized members. Sixty-six of these viruses were tested by cross-neutralization in cell cultures. Flaviviruses were separated into eight complexes [tick-borne encephalitis (12 viruses), Rio Bravo (six), Japanese encephalitis (10), Tyuleniy (three), Ntaya (five), Uganda S (four), dengue (four) and Modoc (five)] containing 49 viruses; 17 other viruses were not sufficiently related to warrant inclusion in any of these complexes.
We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genusFlavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.
Immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA) is a rapid and versatile diagnostic method that readily permits the combination of multiple assays. Test consolidation is especially important for arthropod-borne viruses (arboviruses) which belong to at least three virus families: the Togaviridae,Flaviviridae, and Bunyaviridae. Using prototype viruses from each of these families and a panel of well-characterized human sera, we have evaluated and standardized a combined MAC-ELISA capable of identifying virus infections caused by members of each virus family. Furthermore, by grouping antigens geographically and utilizing known serological cross-reactivities, we have reduced the number of antigens necessary for testing, while maintaining adequate detection sensitivity. We have determined that a 1:400 serum dilution is most appropriate for screening antiviral antibody, using a positive-to-negative ratio of ≥2.0 as a positive cutoff value. With a blind-coded human serum panel, this combined MAC-ELISA was shown to have test sensitivity and specificity that correlated well with those of other serological techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.