Six healthy young male volunteers at a contract research organization were enrolled in the first phase 1 clinical trial of TGN1412, a novel superagonist anti-CD28 monoclonal antibody that directly stimulates T cells. Within 90 minutes after receiving a single intravenous dose of the drug, all six volunteers had a systemic inflammatory response characterized by a rapid induction of proinflammatory cytokines and accompanied by headache, myalgias, nausea, diarrhea, erythema, vasodilatation, and hypotension. Within 12 to 16 hours after infusion, they became critically ill, with pulmonary infiltrates and lung injury, renal failure, and disseminated intravascular coagulation. Severe and unexpected depletion of lymphocytes and monocytes occurred within 24 hours after infusion. All six patients were transferred to the care of the authors at an intensive care unit at a public hospital, where they received intensive cardiopulmonary support (including dialysis), high-dose methylprednisolone, and an anti-interleukin-2 receptor antagonist antibody. Prolonged cardiovascular shock and acute respiratory distress syndrome developed in two patients, who required intensive organ support for 8 and 16 days. Despite evidence of the multiple cytokine-release syndrome, all six patients survived. Documentation of the clinical course occurring over the 30 days after infusion offers insight into the systemic inflammatory response syndrome in the absence of contaminating pathogens, endotoxin, or underlying disease.
Key Points After hydroxycarbamide therapy in high-risk ET, ruxolitinib showed no improvement for complete or partial response rates compared with BAT. Ruxolitinib significantly improved some disease-related symptoms, but rates of thrombosis, hemorrhage, or transformation were not different.
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.
Androgens have been shown to modulate the haematopoietic and immune systems and have been used clinically for stimulating haematopoiesis in bone marrow failure conditions. To identify the bone marrow cell types as potential targets of androgens, an androgen receptor (AR)-specific antibody was used to localize the AR in normal human bone marrow biopsies. The results show that AR was ubiquitously expressed in the bone marrow of both males and females. Furthermore, the AR expression pattern did not change with age. Stromal cells, macrophages, endothelial cells, myeloblasts, myelocytes, neutrophils, and megakaryocytes expressed AR. In contrast, AR was not detected in the lymphoid and erythroid cells, or in eosinophils. These results indicate that androgens may exert direct modulating effects on a wide spectrum of bone marrow cell types via AR-mediated responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.